SonoHaptics: An Audio-Haptic Cursor for Gaze-Based Object Selection in XR

被引:2
作者
Cho, Hyunsung [1 ,3 ]
Sendhilnathan, Naveen [1 ]
Nebeling, Michael [1 ,4 ]
Wang, Tianyi [1 ]
Padmanabhan, Purnima [2 ]
Browder, Jonathan [1 ]
Lindlbauer, David [3 ]
Jonker, Tanya [1 ]
Todi, Kashyap [1 ]
机构
[1] Meta Inc, Real Labs Res, Redmond, WA 98052 USA
[2] Meta Inc, Real Labs Res, Burlingame, CA USA
[3] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[4] Univ Michigan, Ann Arbor, MI USA
来源
PROCEEDINGS OF THE 37TH ANNUAL ACM SYMPOSIUM ON USER INTERFACE SOFTWARE AND TECHNOLOGY, USIT 2024 | 2024年
关键词
Extended Reality; Sonification; Haptics; Multimodal Feedback; Computational Interaction; Gaze-based Selection; PITCH;
D O I
10.1145/3654777.3676384
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce SonoHaptics, an audio-haptic cursor for gaze-based 3D object selection. SonoHaptics addresses challenges around providing accurate visual feedback during gaze-based selection in Extended Reality (XR), e. g., lack of world-locked displays in no- or limited-display smart glasses and visual inconsistencies. To enable users to distinguish objects without visual feedback, SonoHaptics employs the concept of cross-modal correspondence in human perception to map visual features of objects (color, size, position, material) to audio-haptic properties (pitch, amplitude, direction, timbre). We contribute data-driven models for determining cross-modal mappings of visual features to audio and haptic features, and a computational approach to automatically generate audio-haptic feedback for objects in the user's environment. SonoHaptics provides global feedback that is unique to each object in the scene, and local feedback to amplify differences between nearby objects. Our comparative evaluation shows that SonoHaptics enables accurate object identification and selection in a cluttered scene without visual feedback.
引用
收藏
页数:19
相关论文
共 57 条
[31]  
Liu HH, 2023, Arxiv, DOI [arXiv:2301.12503, 10.48550/ARXIV.2301.12503]
[32]   From BoW to CNN: Two Decades of Texture Representation for Texture Classification [J].
Liu, Li ;
Chen, Jie ;
Fieguth, Paul ;
Zhao, Guoying ;
Chellappa, Rama ;
Pietikainen, Matti .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2019, 127 (01) :74-109
[33]   Affordance plus plus : allowing objects to communicate dynamic use [J].
Lopes, Pedro ;
Jonell, Patrik ;
Baudisch, Patrick .
CHI 2015: PROCEEDINGS OF THE 33RD ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2015, :2515-2524
[34]   BlinkWrite: efficient text entry using eye blinks [J].
MacKenzie, I. Scott ;
Ashtiani, Behrooz .
UNIVERSAL ACCESS IN THE INFORMATION SOCIETY, 2011, 10 (01) :69-80
[35]  
MacLean Karon, 2003, Proc. of EuroHaptics, P351, DOI DOI 10.1109/HAPTICS.2006.171
[36]  
Majaranta P, 2016, J EYE MOVEMENT RES, V9
[37]   ASSOCIATIONS OF LIGHT AND SOUND - MEDIATION OF BRIGHTNESS, PITCH, AND LOUDNESS [J].
MARKS, LE .
AMERICAN JOURNAL OF PSYCHOLOGY, 1974, 87 (1-2) :173-188
[38]   JustPoint: Identifying Colors with a Natural User Interface [J].
Mascetti, Sergio ;
D'Acquisto, Silvia ;
Gerino, Andrea ;
Ducci, Mattia ;
Bernareggi, Cristian ;
Coughlan, James M. .
PROCEEDINGS OF THE 19TH INTERNATIONAL ACM SIGACCESS CONFERENCE ON COMPUTERS AND ACCESSIBILITY (ASSETS'17), 2017, :329-330
[39]   Tap the ShapeTones: Exploring the Effects of Crossmodal Congruence in an Audio-Visual Interface [J].
Metatla, Oussama ;
Correia, Nuno N. ;
Martin, Fiore ;
Bryan-Kinns, Nick ;
Stockman, Tony .
34TH ANNUAL CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2016, 2016, :1055-1066
[40]   Gaze Interactive and Attention Aware Low Vision Aids as Future Smart Glasses [J].
Mulvey, Fiona Brid ;
Baekgaard, Per ;
Mikitovic, Marek ;
Sadowski, Mateusz ;
Hou, Baosheng ;
Rasamoel, Nils David ;
Hansen, John Paulin .
ACM SYMPOSIUM ON EYE TRACKING RESEARCH AND APPLICATIONS (ETRA 2021), 2021,