Learning states enhanced Knowledge Tracing: Simulating the diversity in real-world learning process

被引:0
|
作者
Wang, Shanshan [1 ,2 ]
Zhang, Xueying [1 ,2 ]
Yang, Xun [3 ]
Zhang, Xingyi [4 ,5 ]
Wang, Keyang [6 ]
机构
[1] Anhui Univ, Informat Mat & Intelligent Sensing Lab Anhui Prov, Hefei 230601, Peoples R China
[2] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[3] Univ Sci & Technol China, Sch Informat Sci & Technol, Dept Elect Engn & Informat Sci, Hefei 230026, Peoples R China
[4] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[5] Anhui Univ, Sch Comp Sci & Technol, Hefei 230601, Peoples R China
[6] Zhejiang Dahua Technol Co Ltd, Hangzhou 310053, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent education; Knowledge Tracing; Learner states; Educational data mining;
D O I
10.1016/j.eswa.2025.126838
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Knowledge Tracing (KT) task focuses on predicting a learner's future performance based on the historical interactions. The knowledge state plays a key role in learning process. However, considering that the knowledge state is influenced by various learning factors in the interaction process, such as the exercises similarities, responses reliability and the learner's learning state. Previous models still face two major limitations. First, due to the exercises differences caused by various complex reasons and the unreliability of responses caused by guessing behavior, it is hard to locate the historical interaction which is most relevant to the current answered exercise. Second, the learning state is also a key factor to influence the knowledge state, which is always ignored by previous methods. To address these issues, we propose anew method named Learning State Enhanced Knowledge Tracing (LSKT). Firstly, to simulate the potential differences in interactions, inspired by Item Response Theory (IRT) paradigm, we designed three different embedding methods ranging from coarse-grained to fine-grained views and conduct comparative analysis on them. Secondly, we design a learning state extraction module to capture the changing learning state during the learning process of the learner. In turn, with the help of the extracted learning state, amore detailed knowledge state could be captured. Experimental results on four real-world datasets show that our LSKT method outperforms the current state-of-the-art methods. Our code is available at https://github.com/AcatI-B/LSKT.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Deep knowledge tracing with learning curves
    Su, Hang
    Liu, Xin
    Yang, Shanghui
    Lu, Xuesong
    FRONTIERS IN PSYCHOLOGY, 2023, 14
  • [22] Deep Knowledge Tracing with Learning Curves
    Yang, Shanghui
    Liu, Xin
    Su, Hang
    Zhu, Mengxia
    Lu, Xuesong
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 282 - 291
  • [23] Learning Behavior-oriented Knowledge Tracing
    Xu, Bihan
    Huang, Zhenya
    Liu, Jiayu
    Shen, Shuanghong
    Liu, Qi
    Chen, Enhong
    Wu, Jinze
    Wang, Shijin
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2789 - 2800
  • [24] Knowledge Tracing With Learning Memory and Sequence Dependence
    Qin, Xianjing
    Li, Zhijun
    Gao, Yang
    Xue, Tonglai
    IEEE TALE2021: IEEE INTERNATIONAL CONFERENCE ON ENGINEERING, TECHNOLOGY AND EDUCATION, 2021, : 167 - 172
  • [25] Interpreting Deep Learning Models for Knowledge Tracing
    Lu, Yu
    Wang, Deliang
    Chen, Penghe
    Meng, Qinggang
    Yu, Shengquan
    INTERNATIONAL JOURNAL OF ARTIFICIAL INTELLIGENCE IN EDUCATION, 2023, 33 (03) : 519 - 542
  • [26] Variational Deep Knowledge Tracing for Language Learning
    Ruan, Sherry
    Wei, Wei
    Landay, James
    LAK21 CONFERENCE PROCEEDINGS: THE ELEVENTH INTERNATIONAL CONFERENCE ON LEARNING ANALYTICS & KNOWLEDGE, 2021, : 323 - 332
  • [27] Interpreting Deep Learning Models for Knowledge Tracing
    Yu Lu
    Deliang Wang
    Penghe Chen
    Qinggang Meng
    Shengquan Yu
    International Journal of Artificial Intelligence in Education, 2023, 33 : 519 - 542
  • [28] LFKT: Deep Knowledge Tracing Model with Learning and Forgetting Behavior Merging
    Li X.-G.
    Wei S.-Q.
    Zhang X.
    Du Y.-F.
    Yu G.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (03): : 818 - 830
  • [29] Integrate Question Information With Learning Behavior for Knowledge Tracing
    Su, Sheng
    Zeng, Pingfei
    Kang, Chunhua
    Xin, Tao
    IEEE ACCESS, 2025, 13 : 33532 - 33543
  • [30] Self-paced contrastive learning for knowledge tracing
    Dai, Huan
    Yun, Yue
    Zhang, Yupei
    An, Rui
    Zhang, Wenxin
    Shang, Xuequn
    NEUROCOMPUTING, 2024, 609