Traveling waves of the Vlasov-Poisson system

被引:0
作者
Suzuki, Masahiro [1 ]
Takayama, Masahiro [2 ]
Zhang, Katherine Zhiyuan [3 ]
机构
[1] Nagoya Inst Technol, Dept Comp Sci & Engn, Gokiso Cho,Showa Ku, Nagoya, Aichi 4668555, Japan
[2] Keio Univ, Dept Math, Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
[3] NORTHEASTERN UNIV, DEPT MATH, BOSTON, MA 02115 USA
关键词
Solitary waves; Shock waves; Wave trains; Non-BGK waves; BGK WAVES; PLASMA; STABILITY; INSTABILITY;
D O I
10.1016/j.jde.2025.02.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Vlasov-Poisson system describing a two-species plasma with spatial dimension 1 and the velocity variable in Rn. We find the necessary and sufficient conditions for the existence of solitary waves, shock waves, and wave trains of the system, respectively. To this end, we need to investigate solutions that are not BGK waves. Furthermore, we classify completely in all possible cases whether or not the traveling wave is unique. The uniqueness varies according to each traveling wave when we exclude the variant caused by translation. For the solitary wave, there are both cases that it is unique and nonunique. The shock wave is always unique. No wave train is unique. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:230 / 290
页数:61
相关论文
共 23 条
[11]   The Existence of Stable BGK Waves [J].
Guo, Yan ;
Lin, Zhiwu .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (03) :1121-1152
[12]   BIFURCATION OF BGK WAVES IN A PLASMA OF COLD IONS AND ELECTRONS [J].
HANNIBAL, L ;
REBHAN, E ;
KIELHORN, C .
JOURNAL OF PLASMA PHYSICS, 1994, 52 :1-22
[13]   Linear stability and instability of ion-acoustic plasma solitary waves [J].
Haragus, M ;
Scheel, A .
PHYSICA D-NONLINEAR PHENOMENA, 2002, 170 (01) :13-30
[14]   FORMATION AND INTERACTION OF ION-ACOUSTIC SOLITONS [J].
IKEZI, H ;
TAYLOR, RJ ;
BAKER, DR .
PHYSICAL REVIEW LETTERS, 1970, 25 (01) :11-+
[15]   Small BGK Waves and Nonlinear Landau Damping [J].
Lin, Zhiwu ;
Zeng, Chongchun .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (02) :291-331
[16]   Nonlinear instability of periodic BGK waves for Vlasov-Poisson system [J].
Lin, ZW .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (04) :505-528
[17]  
Lin ZW, 2001, MATH RES LETT, V8, P521, DOI 10.4310/MRL.2001.v8.n4.a11
[18]   Stability of Bernstein-Greene-Kruskal modes [J].
Manfredi, G ;
Bertrand, P .
PHYSICS OF PLASMAS, 2000, 7 (06) :2425-2431
[19]   Instability conditions for some periodic BGK waves in the Vlasov-Poisson system [J].
Pankavich, Stephen ;
Allen, Robert .
EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (12)
[20]   STABILITY OF BERNSTEIN-GREENE-KRUSKAL EQUILIBRIA [J].
SCHWARZMEIER, JL ;
LEWIS, HR ;
ABRAHAMSHRAUNER, B ;
SYMON, KR .
PHYSICS OF FLUIDS, 1979, 22 (09) :1747-1760