Power Functions and Their Relationship with the Unified Fractional Derivative

被引:0
作者
Ortigueira, Manuel Duarte [1 ,2 ]
机构
[1] NOVA Univ Lisbon, CTS UNINOVA, P-2829516 Caparica, Portugal
[2] NOVA Univ Lisbon, NOVA Sch Sci & Technol, LASI, P-2829516 Caparica, Portugal
关键词
unified fractional derivative; two-sided derivative; power function; CALCULUS; SYSTEMS;
D O I
10.3390/math13050852
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The different forms of power functions will be studied in connection with the unified fractional derivative, and their Fourier transform will be computed. In particular, one-sided, even, and odd powers will be studied.
引用
收藏
页数:21
相关论文
共 61 条
  • [1] Abramowitz M., 1968, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, V55
  • [2] [Anonymous], 1955, The Convolution Transform
  • [3] Chaudhry M. A., 2001, On a class of incomplete gamma functions with applications
  • [4] A History of the Convolution Operation
    Dominguez, Alejandro
    [J]. IEEE PULSE, 2015, 6 (01) : 38 - 45
  • [5] A coherent approach to non-integer order derivatives
    Duarte Ortigueira, Manuel
    [J]. SIGNAL PROCESSING, 2006, 86 (10) : 2505 - 2515
  • [6] Dzhumadil'daev A, 2013, J INTEGER SEQ, V16
  • [7] Feller W., 1952, Communications du Seminaire Mathematique de Universite de Lund, V21, P73, DOI DOI 10.1186/S13662-017-1354-4
  • [8] Gelfand I.M., 1964, Generalized Functions, V3
  • [9] Some Fractional Integral and Derivative Formulas Revisited
    Gonzalez-Santander, Juan Luis
    Mainardi, Francesco
    [J]. MATHEMATICS, 2024, 12 (17)
  • [10] A COMMENT ON A CONTROVERSIAL ISSUE: A GENERALIZED FRACTIONAL DERIVATIVE CANNOT HAVE A REGULAR KERNEL
    Hanyga, Andrzej
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (01) : 211 - 223