A Personalized Federated Learning Algorithm Based on Dynamic Weight Allocation

被引:0
作者
Liu, Yazhi [1 ]
Li, Siwei [1 ]
Li, Wei [1 ]
Qian, Hui [1 ]
Xia, Haonan [1 ]
机构
[1] North China Univ Sci & Technol, Coll Artificial Intelligence, Tangshan 063210, Peoples R China
来源
ELECTRONICS | 2025年 / 14卷 / 03期
关键词
federated learning; personalized federated learning; data heterogeneity; clustered federated learning; model aggregation;
D O I
10.3390/electronics14030484
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a privacy-preserving distributed machine learning paradigm. However, due to client data heterogeneity, the global model trained by a traditional federated averaging algorithm often exhibits poor generalization ability. To mitigate the impact of data heterogeneity, some existing research has proposed clustered federated learning, where clients with similar data distributions are grouped together to reduce interference from dissimilar clients. However, since the data distribution of clients is unknown, determining the optimal number of clusters is difficult, leading to reduced model convergence efficiency. To address this issue, this paper proposes a personalized federated learning algorithm based on dynamic weight allocation. First, each client is allowed to obtain a global model tailored to fit its local data distribution. During the client model aggregation process, the server first computes the similarity of model updates between clients and dynamically allocates aggregation weights to client models based on these similarities. Secondly, clients use the received exclusive global model to train their local models via the personalized federated learning algorithm. Extensive experimental results demonstrate that, compared to other personalized federated learning algorithms, the proposed method effectively improves model accuracy and convergence speed.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Local Differential Privacy-Based Federated Learning under Personalized Settings
    Wu, Xia
    Xu, Lei
    Zhu, Liehuang
    APPLIED SCIENCES-BASEL, 2023, 13 (07):
  • [32] Joint UAV Deployment and Resource Allocation: A Personalized Federated Deep Reinforcement Learning Approach
    Xu, Xinyi
    Feng, Gang
    Qin, Shuang
    Liu, Yijing
    Sun, Yao
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (03) : 4005 - 4018
  • [33] DWAMA: Dynamic weight-adjusted mahalanobis defense algorithm for mitigating poisoning attacks in federated learning
    Zhang, Guozhi
    Liu, Hongsen
    Yang, Bin
    Feng, Shuyan
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2024, 17 (06) : 3750 - 3764
  • [34] SCAN: A HealthCare Personalized ChatBot with Federated Learning Based GPT
    Puppala, Sai
    Hossain, Ismail
    Alam, Md Jahangir
    Talukder, Sajedul
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 1945 - 1951
  • [35] Fourier Personalized Federated Learning Mechanism Based on Spectral Clustering
    Jin, Tong
    Chen, Siguang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 46 (06) : 1981 - 1989
  • [36] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [37] Household profile identification for retailers based on personalized federated learning
    Liu, Yixing
    Liu, Bo
    Guo, Xiaoyu
    Xu, Yiqiao
    Ding, Zhengtao
    ENERGY, 2023, 275
  • [38] FedCE: Personalized Federated Learning Method based on Clustering Ensembles
    Cai, Luxin
    Chen, Naiyue
    Cao, Yuanzhouhan
    He, Jiahuan
    Li, Yidong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 1625 - 1633
  • [39] Citywide Wireless Traffic Prediction Based on Personalized Federated Learning
    Lin S.
    Ma J.
    Li Y.
    Zhuang B.
    Li T.
    Li Z.
    Tian J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2023, 52 (01): : 67 - 73
  • [40] Predicting the Prognosis of Stroke Patients Based on Personalized Federated Learning
    Yang, Jie
    Xie, Haoyu
    Huang, Lianfen
    Gao, Zhibin
    Shen, Shaowei
    JOURNAL OF INTERNET TECHNOLOGY, 2024, 25 (06): : 815 - 824