Quelling the Geometry Factor Effect in Quantum Chemical Calculations of 13C NMR Chemical Shifts with the Aid of the pecG-n (n=1, 2) Basis Sets

被引:2
|
作者
Rusakov, Yuriy Yu. [1 ]
Semenov, Valentin A. [1 ]
Rusakova, Irina L. [1 ]
机构
[1] Russian Acad Sci, A E Favorsky Irkutsk Inst Chem, Siberian Branch, Favorsky St 1, Irkutsk 664033, Russia
基金
俄罗斯科学基金会;
关键词
pecG-1; pecG-2; PEC; equilibrium geometry; C-13; NMR; chemical shift; shielding constant; DFT; coupled clusters; natural products; CORRELATED MOLECULAR CALCULATIONS; GAUSSIAN-BASIS SETS; ELECTRON CORRELATION; STRYCHNOS-ICAJA; ORBITAL METHODS; ALKALOIDS; ACID; THERMOCHEMISTRY; SPECTROMETRY; CONVENTIONS;
D O I
10.3390/ijms251910588
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A root factor for the accuracy of all quantum chemical calculations of nuclear magnetic resonance (NMR) chemical shifts is the quality of the molecular equilibrium geometry used. In turn, this quality depends largely on the basis set employed at the geometry optimization stage. This parameter represents the main subject of the present study, which is a continuation of our recent work, where new pecG-n (n = 1, 2) basis sets for the geometry optimization were introduced. A goal of this study was to compare the performance of our geometry-oriented pecG-n (n = 1, 2) basis sets against the other basis sets in massive calculations of C-13 NMR shielding constants/chemical shifts in terms of their efficacy in reducing geometry factor errors. The testing was carried out with both large-sized biologically active natural products and medium-sized compounds with complicated electronic structures. The former were treated using the computation protocol based on the density functional theory (DFT) and considered in the theoretical benchmarking, while the latter were treated using the computational scheme based on the upper-hierarchy coupled cluster (CC) methods and were used in the practical benchmarking involving the comparison with experimental NMR data. Both the theoretical and practical analyses showed that the pecG-1 and pecG-2 basis sets resulted in substantially reduced geometry factor errors in the calculated C-13 NMR chemical shifts/shielding constants compared to their commensurate analogs, with the pecG-2 basis set being the best of all the considered basis sets.<br />
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On the utmost importance of the geometry factor of accuracy in the quantum chemical calculations of 31P NMR chemical shifts: New efficient pecG-n (n=1, 2) basis sets for the geometry optimization procedure
    Rusakov, Yu. Yu.
    Nikurashina, Yu. A.
    Rusakova, I. L.
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (08)
  • [2] New pecS-n (n=1, 2) basis sets for quantum chemical calculations of the NMR chemical shifts of H, C, N, and O nuclei
    Rusakov, Yuriy Yu.
    Rusakova, Irina L.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (24)
  • [3] On the Efficiency of the Density Functional Theory (DFT)-Based Computational Protocol for 1H and 13C Nuclear Magnetic Resonance (NMR) Chemical Shifts of Natural Products: Studying the Accuracy of the pecS-n (n=1, 2) Basis Sets
    Rusakov, Yuriy Yu.
    Semenov, Valentin A.
    Rusakova, Irina L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [4] Getaway from the Geometry Factor Error in the Molecular Property Calculations: Efficient pecG-n (n=1, 2) Basis Sets for the Geometry Optimization of Molecules Containing Light p Elements
    Rusakov, Yuriy Yu.
    Rusakova, Irina L.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (15) : 6661 - 6673
  • [5] New efficient pecS-n (n=1, 2) basis sets for quantum chemical calculations of 31P NMR chemical shifts
    Rusakov, Yuriy Yu.
    Rusakova, Irina L. L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (28) : 18728 - 18741
  • [6] Comparison of different theory models and basis sets in the calculation of 13C NMR chemical shifts of natural products
    Cimino, P
    Gomez-Paloma, L
    Duca, D
    Riccio, R
    Bifulco, G
    MAGNETIC RESONANCE IN CHEMISTRY, 2004, 42 : S26 - S33
  • [7] 1H and 13C NMR chemical shifts of 2-n-alkylamino-naphthalene-1,4-diones
    Patil, Rishikesh
    Jadhav, Mahesh
    Salunke-Gawali, Sunita
    Lande, Dipali N.
    Gejji, Shridhar P.
    Chakravarty, Debamitra
    HELIYON, 2021, 7 (01)
  • [8] 1H/13C chemical shift calculations for biaryls: DFT approaches to geometry optimization
    Nguyen, Thien T.
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (09):
  • [9] The observed and calculated 1H and 13C chemical shifts of tertiary amines and their N-oxides
    Pohl, Radek
    Dracinsky, Martin
    Slavetinska, Lenka
    Budesinsky, Milos
    MAGNETIC RESONANCE IN CHEMISTRY, 2011, 49 (06) : 320 - 327
  • [10] Calculations of 13C NMR chemical shifts and F-C coupling constants of ciprofloxacin
    Koch, Andreas
    Stamboliyska, Bistra
    Mikhova, Bozhana
    Breznica-Selmani, Pranvera
    Mladenovska, Kristina
    Popovski, Emil
    MAGNETIC RESONANCE IN CHEMISTRY, 2019, 57 (04) : 75 - 84