Theoretical Analysis on Block Time Distributions in Byzantine Fault-Tolerant Consensus Blockchains

被引:0
|
作者
Fujihara, Akihiro [1 ]
机构
[1] Chiba Inst Technol, Grad Sch Engn, 2-17-1 Tsudanuma, Narashino, Chiba 2750016, Japan
基金
日本学术振兴会;
关键词
Blockchain; Byzantine fault tolerance; block time; mathematical model; data analysis; Gumbel distribution;
D O I
10.1109/Blockchain62396.2024.00056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some blockchain networks employ a distributed consensus algorithm featuring Byzantine fault tolerance. Notably, certain public chains, such as Cosmos and Tezos, which operate on a proof-of-stake mechanism, have adopted this algorithm. While it is commonly assumed that these blockchains maintain a nearly constant block creation time, empirical analysis reveals fluctuations in this interval; this phenomenon has received limited attention. In this paper, we propose a mathematical model to account for the processes of block propagation and validation within Byzantine fault-tolerant consensus blockchains, aiming to theoretically analyze the probability distribution of block time. First, we propose stochastic processes governing the broadcasting communications among validator nodes. Consequently, we theoretically demonstrate that the probability distribution of broadcast time among validator nodes adheres to the Gumbel distribution. This finding indicates that the distribution of block time typically arises from convolving multiple Gumbel distributions. Additionally, we derive an approximate formula for the block time distribution suitable for data analysis purposes. By fitting this approximation to real-world block time data, we demonstrate the consistent estimation of block time distribution parameters.
引用
收藏
页码:378 / 385
页数:8
相关论文
共 50 条
  • [1] Leaderless Byzantine Fault-Tolerant Consensus Protocol for Blockchains
    Afanasyeva, Anastasia
    Kameskiy, Denis
    Telnov, Sergei
    Yanovich, Yury
    6TH INTERNATIONAL CONFERENCE ON BLOCKCHAIN TECHNOLOGY AND APPLICATIONS, ICBTA 2023, 2023, : 78 - 84
  • [2] CRBFT: A Byzantine Fault-Tolerant Consensus Protocol Based on Collaborative Filtering Recommendation for Blockchains
    Wu, Xiangyu
    Du, Xuehui
    Yang, Qiantao
    Liu, Aodi
    Wang, Na
    Wang, Wenjuan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 1491 - 1519
  • [3] Lodestone: An Efficient Byzantine Fault-Tolerant Protocol in Consortium Blockchains
    Shan, Chen
    Fan, Lei
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [4] Byzantine Fault-Tolerant Consensus Algorithms: A Survey
    Zhong, Weiyu
    Yang, Ce
    Liang, Wei
    Cai, Jiahong
    Chen, Lin
    Liao, Jing
    Xiong, Naixue
    ELECTRONICS, 2023, 12 (18)
  • [5] Binding Efficiency and Robustness for Blockchains using Reputation-based Byzantine Fault-Tolerant Consensus Algorithms
    Zhang, Gengrui
    PROCEEDINGS OF THE 23RD INTERNATIONAL MIDDLEWARE CONFERENCE DOCTORAL SYMPOSIUM, MIDDLEWARE 2022 DOCTORAL SYMPOSIUM, 2022, : 11 - 14
  • [6] A Byzantine Fault-Tolerant Consensus Library for Hyperledger Fabric
    Barger, Artem
    Manevich, Yacov
    Meir, Hagar
    Tock, Yoav
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (ICBC), 2021,
  • [7] The Performance of Byzantine Fault Tolerant Blockchains
    Shapiro, Gary
    Natoli, Christopher
    Gramoli, Vincent
    2020 IEEE 19TH INTERNATIONAL SYMPOSIUM ON NETWORK COMPUTING AND APPLICATIONS (NCA), 2020,
  • [8] Towards Truly Adaptive Byzantine Fault-Tolerant Consensus
    Wu, Chenyuan
    Qin, Haoyun
    Amiri, Mohammad Javad
    Loo, Boon Thau
    Malkhi, Dahlia
    Marcus, Ryan
    Operating Systems Review (ACM), 2024, 58 (01): : 15 - 22
  • [9] Byzantine Fault-Tolerant Time in Hyperledger Fabric
    Filippov, Aleksandr
    Barger, Artem
    Popov, Vladimir
    Abdrashitov, Oleg
    2022 4TH CONFERENCE ON BLOCKCHAIN RESEARCH & APPLICATIONS FOR INNOVATIVE NETWORKS AND SERVICES (BRAINS), 2022, : 17 - 24
  • [10] Byzantine fault-tolerant and semantic-driven consensus protocol
    Rakitin, Stepan
    Visheratin, Alexander A.
    Nasonov, Denis
    7TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2018, 2018, 136 : 25 - 34