The study examined the effects of nanomorphologies on electrical conductivity, Raman modes, and photoluminescence in two ZnO films grown by oxidizing metallic Zn on glass substrates. The first film, ZnO-TH1, exhibited distinct nano-granules, while the second film, ZnO-TH2, displayed highly crystalline, chaotic nanostructures, indicating potential applications in optoelectronics. X-ray diffraction analysis revealed a hexagonal wurtzite structure with a space group of P63mc. The films' electrical conductivity was temperature-dependent, with thermally activated conduction and variable-range hopping as the primary conduction mechanisms. The near-edge absorption ratios and Urbach energies were associated with reduced structural disorder and defect energy levels. The orientation of low-dimensional ZnO nanostructures significantly influenced the position, shape, and width of Raman spectral bands. The synthesized ZnO demonstrates potential for solid-state LED applications due to its nanoscale morphologies.