Dynamics of Pinned Pulses in a Class of Nonlinear Reaction-Diffusion Equations with Strong Localized Impurities

被引:0
|
作者
Li, Ji [1 ]
Shen, Jianhe [2 ]
Zhang, Qian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Fujian Normal Univ, Coll Math & Stat, Fuzhou 350007, Peoples R China
来源
基金
国家重点研发计划;
关键词
Strong localized impurity; existence; stability; pinned solution; Hopf bifurcation; STABILITY ANALYSIS; PATTERNS; MODEL;
D O I
10.1142/S0218127425500208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For linear reaction-diffusion equations, a general geometric singular perturbation framework was developed, to study the impact of strong, spatially localized, smooth nonlinear impurities on the existence, stability, and bifurcation of localized structure, in the paper [Doelman et al., 2018]. The multiscale nature enables deriving algebraic conditions determining the existence of pinned single- and multi-pulses. Moreover, linearity enables treating the spectral stability issue for pinned pulses similarly to the problem of existence. In this paper, we move one step further to treat a special type of nonlinear reaction-diffusion equation with the same type of impurity. The additional nonlinear term generates richer and more complex dynamics. We derive algebraic conditions for determining the existence and stability of pinned pulses in terms of Legendre functions.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Pulse dynamics in reaction-diffusion equations with strong spatially localized impurities
    Doelman, Arjen
    van Heijster, Peter
    Shen, Jianhe
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2117):
  • [2] Pattern formations in nonlinear reaction-diffusion systems with strong localized impurities
    Chen, Yuanxian
    Li, Ji
    Shen, Jianhe
    Zhang, Qian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 250 - 289
  • [3] The dynamics of localized solutions of nonlocal reaction-diffusion equations
    Ward, MJ
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (04): : 477 - 495
  • [4] Particular Solutions of a Class of Nonlinear Reaction-Diffusion Equations
    Chu, Hongxue
    Jiang, Tongsong
    INFORMATION COMPUTING AND APPLICATIONS, ICICA 2013, PT I, 2013, 391 : 584 - 592
  • [5] EXISTENCE OF PULSES IN REACTION-DIFFUSION EQUATIONS
    SCHNEIDER, KR
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T780 - T782
  • [6] ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Jarohs, Sven
    Weth, Tobias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) : 2581 - 2615
  • [7] Convergence of a class of nonlinear time delays reaction-diffusion equations
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [8] Convergence of a class of nonlinear time delays reaction-diffusion equations
    Omar Anza Hafsa
    Jean Philippe Mandallena
    Gérard Michaille
    Nonlinear Differential Equations and Applications NoDEA, 2020, 27
  • [9] Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    ASYMPTOTIC ANALYSIS, 2019, 115 (3-4) : 169 - 221
  • [10] Fronts and pulses in a class of reaction-diffusion equations: a geometric singular perturbation approach
    Hek, G
    NONLINEARITY, 2001, 14 (01) : 35 - 72