Tuning the Li-Sn alloy dispersity to improve the lithiophilicity of lithium metal anodes towards stable lithium metal batteries

被引:0
|
作者
Du, Junmou [1 ,4 ]
Li, Guocheng [2 ]
Tan, Yuchen [3 ]
Duan, Xiangrui [3 ]
Fan, Tianchi [4 ]
Du, Changhong [4 ]
Zhou, Anjian [4 ]
Wang, Yu [1 ]
机构
[1] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 400044, Peoples R China
[2] Yangtze Univ, Sch Chem & Environm Engn, Jingzhou 434023, Peoples R China
[3] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[4] Chongqing Changan Automobile Co Ltd, Inst Adv Battery, Chongqing 400020, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2025年 / 12卷 / 08期
基金
中国国家自然科学基金;
关键词
DENDRITE GROWTH;
D O I
10.1039/d4qi02971b
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Constructing lithium alloy composite anodes is a crucial approach to achieving high-energy-density lithium metal batteries with long cycling stability. However, achieving a uniform distribution of lithium alloy within the anodes using the current methods is challenging. In this study, we fabricated a novel composite lithium anode, p-20Li/Li13Sn5, by incorporating metallic lithium and tin powder using a straightforward "roll and fold" technique. This method ensured the uniform distribution of Li13Sn5 particles within the lithium matrix, thereby enhancing the lithiophilicity of the composite electrode. The unique structural characteristics of the p-20Li/Li13Sn5 anode lead to significantly improved performances. Compared to the lithium alloy anode prepared using tin foil (f-20Li/Li13Sn5), the p-20Li/Li13Sn5 anode exhibited a stable voltage response and reduced interfacial impedance in symmetric cells over 400 hours of cycling. When paired with a high-capacity sulfurized polyacrylonitrile (SPAN) cathode (5.6 mA h cm-2), the cell using p-20Li/Li13Sn5 as the anode displayed superior cycling stability, achieving 91.5% capacity retention over 100 cycles. This innovative approach, which leverages lithiophilic metal powders to build highly dispersed lithium alloy networks, presents a promising strategy for the advancement of lithium metal batteries. Our findings could contribute to the development of composite lithium alloy anodes with high lithium alloy utilization, paving the way for next-generation lithium battery technologies.
引用
收藏
页码:3137 / 3146
页数:10
相关论文
共 50 条
  • [41] A solid-solution-based Li-Mg alloy for highly stable lithium metal anodes
    Guo, Baochun
    Guo, Peiyan
    Zhao, Guohao
    Liu, Shuai
    Shi, Jing
    Huang, Minghua
    Shi, Zhicheng
    Wang, Huanlei
    Yan, Zhenhua
    SUSTAINABLE ENERGY & FUELS, 2022, 6 (18) : 4137 - 4145
  • [42] Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
    Zhang, Heng
    Gebresilassie Eshetu, Gebrekidan
    Judez, Xabier
    Li, Chunmei
    Rodriguez-Martinez, Lide M.
    Armand, Michel
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (46) : 15002 - 15027
  • [43] Revisiting the Electroplating Process for Lithium-Metal Anodes for Lithium-Metal Batteries
    Sun, Xiaowen
    Zhang, Xinyue
    Ma, Qingtao
    Guan, Xuze
    Wang, Wei
    Luo, Jiayan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (17) : 6665 - 6674
  • [44] Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries
    Mingming Tao
    Junning Chen
    Hongxin Lin
    Yingao Zhou
    Danhui Zhao
    Peizhao Shan
    Yanting Jin
    Yong Yang
    Journal of Energy Chemistry, 2024, 96 (09) : 226 - 248
  • [45] Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries
    Tao, Mingming
    Chen, Junning
    Lin, Hongxin
    Zhou, Yingao
    Zhao, Danhui
    Shan, Peizhao
    Jin, Yanting
    Yang, Yong
    JOURNAL OF ENERGY CHEMISTRY, 2024, 96 : 226 - 248
  • [46] Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes
    Chen, Xiang
    Chen, Xiao-Ru
    Hou, Ting-Zheng
    Li, Bo-Quan
    Cheng, Xin-Bing
    Zhang, Rui
    Zhang, Qiang
    SCIENCE ADVANCES, 2019, 5 (02)
  • [47] BATTERIES A stable lithium metal interface
    Bouchet, Renaud
    NATURE NANOTECHNOLOGY, 2014, 9 (08) : 572 - 573
  • [48] Methods to Improve Lithium Metal Anode for Li-S Batteries
    Xiong, Xiaosong
    Yan, Wenqi
    You, Chaolin
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Zhang, Yi
    Yu, Nengfei
    Wu, Yuping
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [49] Unique Li Composite Anode with LiF on the Surface and Li-Sn Alloy Inside for Next Generation Li Metal Batteries
    Xiao, Zhifeng
    Chen, Jinbiao
    Zhang, Haitao
    Yu, Kaichen
    Li, Jie
    Li, Xifang
    Alodhayb, Abdullah N.
    Shi, Zhicong
    BATTERIES & SUPERCAPS, 2025,
  • [50] Li-B-Cu Anodes with a Stable Three-Dimensional Composite Skeleton for Lithium Metal Batteries
    He, Pan
    Huang, Shaozhen
    Qing, Piao
    Chen, Dongping
    Long, Kecheng
    Huang, Haifeng
    Chen, Yuejiao
    Mei, Lin
    Chen, Libao
    ENERGY & FUELS, 2023, 37 (23) : 17988 - 17996