Machine Learning Guided Discovery of Non-Linear Optical Materials

被引:0
作者
Mondal, Sownyak [1 ]
Hammad, Raheel [1 ]
机构
[1] Tata Inst Fundamental Res Hyderabad, Hyderabad 500046, Telangana, India
关键词
DFT; hardness; materials discovery; materials science; NLO materials; ENERGY-GAP; REFRACTIVE-INDEX; CRYSTAL-GROWTH; SEMICONDUCTORS; MICROHARDNESS; DAMAGE;
D O I
10.1002/adts.202400463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nonlinear optical(NLO) materials are crucial in achieving desired frequencies in solid-state lasers. So far, new NLO materials have been discovered using high-throughput calculations or chemical intuition. This study demonstrates the effectiveness of utilizing a high refractive index as a proxy for a high second harmonic generation(SHG) coefficient. It also emphasizes the importance of hardness in screening balanced NLO materials. Two machine learning models are developed to predict refractive indices and Vickers hardness. By applying these models to the OQMD database, potential NLO candidates are identified based on non-centrosymmetricity, refractive index, hardness value, and bandgap properties. These findings are validated using density functional theory(DFT) calculations. Notably, this approach successfully identifies several already established NLO materials, reinforcing the validity of the methodology.
引用
收藏
页数:6
相关论文
共 51 条
  • [1] Ahmad Bhatti Humera I., 2022, J MOL MODEL, V28, P164, DOI DOI 10.1007/s00894-022-05141-8
  • [2] [Anonymous], 2024, ChemRxiv
  • [3] Fundamentals of nonlinear optical materials
    Arivuoli, D
    [J]. PRAMANA-JOURNAL OF PHYSICS, 2001, 57 (5-6): : 871 - 883
  • [4] LINBO3 - EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL ( UNIAXIAL PIEZOELECTRIC OPTICAL PARAMETRIC EFFECTS E )
    BOYD, GD
    NASSAU, K
    MILLER, RC
    BOND, WL
    SAVAGE, A
    [J]. APPLIED PHYSICS LETTERS, 1964, 5 (11) : 234 - +
  • [5] Crystal growth and optical properties of ASGaS2 and AgGaSe2
    Catella, GC
    Burlage, D
    [J]. MRS BULLETIN, 1998, 23 (07) : 28 - 36
  • [6] Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications
    Chan, Emory M.
    [J]. CHEMICAL SOCIETY REVIEWS, 2015, 44 (06) : 1653 - 1679
  • [7] Modeling hardness of polycrystalline materials and bulk metallic glasses
    Chen, Xing-Qiu
    Niu, Haiyang
    Li, Dianzhong
    Li, Yiyi
    [J]. INTERMETALLICS, 2011, 19 (09) : 1275 - 1281
  • [8] Behaviour of the non-linear optical material KTiOPO4 in the temperature range 293-973 K studied by x-ray diffractometry at high resolution:: alkaline displacements
    Delarue, P
    Lecomte, C
    Jannin, M
    Marnier, G
    Menaert, B
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 1999, 11 (21) : 4123 - 4134
  • [9] Discovery of Non-linear Optical Materials by Function-Based Screening of Multi-component Solids
    Goud, N. Rajesh
    Zhang, Xuepeng
    Bredas, Jean-Luc
    Coropceanu, Veaceslav
    Matzger, Adam J.
    [J]. CHEM, 2018, 4 (01): : 150 - 161
  • [10] Predicting Poisson's Ratio: A Study of Semisupervised Anomaly Detection and Supervised Approaches
    Hammad, Raheel
    Mondal, Sownyak
    [J]. ACS OMEGA, 2023, 9 (01): : 1956 - 1961