PANDA: Practical Adversarial Attack Against Network Intrusion Detection

被引:0
|
作者
Swain, Subrat Kumar [1 ,2 ]
Kumar, Vireshwar [3 ]
Bai, Guangdong [1 ]
Kim, Dan Dongseong [1 ]
机构
[1] UQ, St Lucia, Qld, Australia
[2] IITD Res Acad, New Delhi, India
[3] Indian Inst Technol Delhi, New Delhi, India
来源
2024 54TH ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS-SUPPLEMENTAL VOLUME, DSN-S 2024 | 2024年
关键词
Adversarial Attacks; Robustness; NIDS; Network Security;
D O I
10.1109/DSN-S60304.2024.00017
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
While adversarial machine learning (AML) attacks have become prevalent in the computer vision (CV) domain, their applications in other domains, such as network intrusion detection systems (NIDS), remain limited. This gap stems from the lack of a well-defined input space in non-image domains, hindering the generation of adversarial examples. Unlike CV problems, where the input space is the feature space, other domains generally lack a precise inverse mapping from the feature space to the problem space. In this work, we propose PANDA, a novel approach that bridges this gap and enables AML attacks against NIDS. PANDA represents a series of packets as images for training a surrogate NIDS model. Benefiting from the invertibility of this representation, PANDA leverages well-evolved image-based AML attacks to generate adversarial examples against the surrogate model. It then repurposes the adversarial examples from the surrogate model to evade the target NIDS model. We demonstrate the effectiveness of PANDA by successfully crafting adversarial network intrusions with the UQ-IoT dataset. This work establishes a framework for transferring AML attacks from the CV domain to the network domain, opening new avenues for attack modelling and defence strategies in NIDS.
引用
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [1] ProGen: Projection-Based Adversarial Attack Generation Against Network Intrusion Detection
    Wang, Minxiao
    Yang, Ning
    Forcade-Perkins, Nicolas J.
    Weng, Ning
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5476 - 5491
  • [2] Network Intrusion Detection System based on Generative Adversarial Network for Attack Detection
    Das, Abhijit
    Balakrishnan, S. G.
    Pramod
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 757 - 766
  • [3] Generating practical adversarial examples against learning-based network intrusion detection systems
    Kumar, Vivek
    Kumar, Kamal
    Singh, Maheep
    ANNALS OF TELECOMMUNICATIONS, 2025, 80 (3-4) : 209 - 226
  • [4] IDSGAN: Generative Adversarial Networks for Attack Generation Against Intrusion Detection
    Lin, Zilong
    Shi, Yong
    Xue, Zhi
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT III, 2022, 13282 : 79 - 91
  • [5] Adversarial Attacks Against Network Intrusion Detection in IoT Systems
    Qiu, Han
    Dong, Tian
    Zhang, Tianwei
    Lu, Jialiang
    Memmi, Gerard
    Qiu, Meikang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10327 - 10335
  • [6] Adversarial Attack against LSTM-based DDoS Intrusion Detection System
    Huang, Weiqing
    Peng, Xiao
    Shi, Zhixin
    Ma, Yuru
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 686 - 693
  • [7] Adversarial Attack Detection Approach for Intrusion Detection Systems
    Degirmenci, Elif
    Ozcelik, Ilker
    Yazici, Ahmet
    IEEE ACCESS, 2024, 12 : 195996 - 196009
  • [8] Modeling Realistic Adversarial Attacks against Network Intrusion Detection Systems
    Apruzzese, Giovanni
    Andreolini, Mauro
    Ferretti, Luca
    Marchetti, Mirco
    Colajanni, Michele
    DIGITAL THREATS: RESEARCH AND PRACTICE, 2022, 3 (03):
  • [9] Enhancing Robustness Against Adversarial Examples in Network Intrusion Detection Systems
    Hashemi, Mohammad J.
    Keller, Eric
    2020 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (NFV-SDN), 2020, : 37 - 43
  • [10] Investigating Adversarial Attacks against Network Intrusion Detection Systems in SDNs
    Aiken, James
    Scott-Hayward, Sandra
    2019 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2019,