Meta-heuristics for Portfolio Optimization: Part II-Empirical Analysis

被引:0
作者
Erwin, Kyle [1 ]
Engelbrecht, Andries [1 ,2 ,3 ]
机构
[1] Stellenbosh Univ, Comp Sci Div, Stellenbosch, South Africa
[2] Stellenbosh Univ, Dept Ind Engn, Stellenbosch, South Africa
[3] Gulf Univ Sci & Technol, Ctr Appl Math & Bioinformat, Mubarak Al Abdullah, Kuwait
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2023, PT II | 2023年 / 13969卷
关键词
Set-based Particle Swarm Optimization; Particle Swarm Optimization; Artificial Bee Colony; Firefly Algorithm; Genetic Algorithm; Portfolio Optimization;
D O I
10.1007/978-3-031-36625-3_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A companion paper identified five meta-heuristic approaches for the unconstrained portfolio optimization problem. Four of which, artificial bee colony (ABC), firefly algorithm (FA), a genetic algorithm (GA) and particle swarm optimization (PSO), are very popular approaches to the problem. The fifth meta-heuristic identified, set-based particle swarm optimization (SBPSO), is a new set-based approach that redefines the portfolio optimization problem as a combinatorial optimization problem. This paper investigates the performance of SBPSO against the aforementioned popular approaches to portfolio optimization. It is shown that SBPSO is a highly competitive approach to portfolio optimization. Furthermore, SBPSO scaled to larger portfolio problems without a reduction in performance, while being significantly faster than the other algorithms.
引用
收藏
页码:453 / 464
页数:12
相关论文
共 9 条
  • [1] Heuristics for cardinality constrained portfolio optimisation
    Chang, TJ
    Meade, N
    Beasley, JE
    Sharaiha, YM
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (13) : 1271 - 1302
  • [2] Eberhart R., 1995, MHS 95 P 6 INT S MIC, P39, DOI DOI 10.1109/MHS.1995.494215
  • [3] Erwin Kyle, 2020, 2020 IEEE Symposium Series on Computational Intelligence (SSCI), P1573, DOI 10.1109/SSCI47803.2020.9308579
  • [4] Erwin K., 2023, Proceedings of the 7th International Conference on Swarm Intelligence. ICSI '23
  • [5] Karaboga D., 2005, TR06 ERC U COMP ENG
  • [6] An improved multi-objective particle swarm optimizer for multi-objective problems
    Tsai, Shang-Jeng
    Sun, Tsung-Ying
    Liu, Chan-Cheng
    Hsieh, Sheng-Ta
    Wu, Wun-Ci
    Chiu, Shih-Yuan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (08) : 5872 - 5886
  • [7] Van Veldhuizen DA, 2000, IEEE C EVOL COMPUTAT, P204, DOI 10.1109/CEC.2000.870296
  • [8] Yang XS, 2009, LECT NOTES COMPUT SC, V5792, P169, DOI 10.1007/978-3-642-04944-6_14
  • [9] Performance assessment of multiobjective optimizers: An analysis and review
    Zitzler, E
    Thiele, L
    Laumanns, M
    Fonseca, CM
    da Fonseca, VG
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) : 117 - 132