XaaS: Acceleration as a Service to Enable Productive High-Performance Cloud Computing

被引:0
|
作者
Hoefler, Torsten [1 ]
Copik, Marcin [1 ]
Beckman, Pete [2 ]
Jones, Andrew [3 ]
Foster, Ian [4 ]
Parashar, Manish [5 ]
Reed, Daniel [6 ]
Troyer, Matthias [3 ]
Schulthess, Thomas [7 ]
Ernst, Daniel [8 ]
Dongarra, Jack [9 ]
机构
[1] Swiss Fed Inst Technol, CH-8093 Zurich, Switzerland
[2] Argonne Natl Lab, Lemont, IL 60439 USA
[3] Microsoft, Redmond, WA 98052 USA
[4] Argonne Natl Lab, Data Sci & Learning Div, Lemont, IL 60439 USA
[5] Utah Univ, Kalhert Sch Comp, Salt Lake City, UT 84112 USA
[6] Univ Utah, Comp Sci & Elect & Comp Engn, Salt Lake City, UT 84117 USA
[7] Swiss Natl Supercomp Ctr, CH-6900 Lugano, Switzerland
[8] Nvidia, Santa Clara, CA 95051 USA
[9] Univ Tennessee, Knoxville, TN 37996 USA
关键词
Cloud computing; Containers; Computational modeling; Computer architecture; Meteorology; Ecosystems; Resource management;
D O I
10.1109/MCSE.2024.3382154
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
High-performance computing (HPC) and the cloud have evolved independently, specializing their innovations into performance or productivity. Acceleration as a Service (XaaS) is a recipe to empower both fields with a shared execution platform that provides transparent access to computing resources, regardless of the underlying cloud or HPC service provider. Bridging HPC and cloud advancements, XaaS presents a unified architecture built on performance-portable containers. Our converged model concentrates on low-overhead, high-performance communication and computing, targeting resource-intensive workloads from climate simulations to machine learning. XaaS lifts the restricted allocation model of Function as a Service (FaaS), allowing users to benefit from the flexibility and efficient resource utilization of serverless computing while supporting long-running and performance-sensitive workloads from HPC.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [31] OpenStack Cloud Tuning for High Performance Computing
    Ivanovic, Pavle
    Richter, Harald
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2018, : 142 - 146
  • [32] Performance Evaluation of Cloud Computing Centers with General Arrivals and Service
    Atmaca, Tulin
    Begin, Thomas
    Brandwajn, Alexandre
    Castel-Taleb, Hind
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2016, 27 (08) : 2341 - 2348
  • [33] Service Performance Analysis of Cloud Computing Server by Queuing System
    Wang, Ruijuan
    Zai, Guangjun
    Liu, Yan
    Pang, Haibo
    MOBILE COMPUTING, APPLICATIONS, AND SERVICES, MOBICASE 2021, 2022, 434 : 42 - 53
  • [34] Performance of Noise Map Service Working in Cloud Computing Environment
    Marciniuk, Karolina
    Szczodrak, Maciej
    Kostek, Bozena
    ARCHIVES OF ACOUSTICS, 2016, 41 (02) : 297 - 302
  • [35] Policy4TOSCA: A Policy-Aware Cloud Service Provisioning Approach to Enable Secure Cloud Computing
    Waizenegger, Tim
    Wieland, Matthias
    Binz, Tobias
    Breitenbuecher, Uwe
    Haupt, Florian
    Kopp, Oliver
    Leymann, Frank
    Mitschang, Bernhard
    Nowak, Alexander
    Wagner, Sebastian
    ON THE MOVE TO MEANINGFUL INTERNET SYSTEMS: OTM 2013 CONFERENCES, 2013, 8185 : 360 - 376
  • [36] EVOLVE: Towards Converging Big-Data, High-Performance and Cloud-Computing Worlds
    Tzenetopoulos, Achilleas
    Masouros, Dimosthenis
    Koliogeorgi, Konstantina
    Xydis, Sotirios
    Soudris, Dimitrios
    Chazapis, Antony
    Kozanitis, Christos
    Bilas, Angelos
    Pinto, Christian
    Huy-Nam Nguyen
    Louloudakis, Stelios
    Gardikis, Georgios
    Vamvakas, George
    Aubrun, Michelle
    Symeonidou, Christy
    Spitadakis, Vassilis
    Xylogiannopoulos, Konstantinos
    Peischl, Bernhard
    Kalayci, Tahir Emre
    Stocker, Alexander
    Acquaviva, Jean-Thomas
    PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 975 - 980
  • [37] MCX Cloud-a modern, scalable, high-performance and in-browser Monte Carlo simulation platform with cloud computing
    Fang, Qianqian
    Yan, Shijie
    JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (08)
  • [38] Unified Cloud Orchestration Framework for Elastic High Performance Computing in the Cloud
    Miroslaw, Lukasz
    Pantic, Michael
    Nordborg, Henrik
    IOTBD: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS AND BIG DATA, 2016, : 291 - 298
  • [39] An efficient job management of computing service using integrated idle VM resources for high-performance computing based on OpenStack
    Han, Seok-Hyeon
    Kim, Hyun-Woo
    Jeong, Young-Sik
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (08): : 4388 - 4407
  • [40] An efficient job management of computing service using integrated idle VM resources for high-performance computing based on OpenStack
    Seok-Hyeon Han
    Hyun-Woo Kim
    Young-Sik Jeong
    The Journal of Supercomputing, 2019, 75 : 4388 - 4407