ON MULTIPLICITY-FREE WEIGHT MODULES OVER QUANTUM AFFINE ALGEBRAS

被引:1
作者
Liu, Xingpeng [1 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Int Ctr Math, Shenzhen, Peoples R China
基金
中国博士后科学基金;
关键词
quantum affine algebra; representation theory; multiplicity-free weight modules; OSCILLATOR REPRESENTATIONS; TETRAHEDRON EQUATION; DRINFELD REALIZATION; R MATRICES; CATEGORY;
D O I
10.2140/pjm.2024.330.251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal is to construct and study the multiplicity-free weight modules of quantum affine algebras. For this, we introduce the notion of shiftability condition with respect to a symmetrizable generalized Cartan matrix, and investigate its applications on the study of quantum affine algebra structures and the realizations of the infinite-dimensional multiplicity-free weight modules. We also compute the highest `-weights of the infinite-dimensional multiplicity-free weight modules as highest `-weight modules.
引用
收藏
页码:251 / 282
页数:35
相关论文
共 34 条
[1]  
[Anonymous], 2014, B AM MATH SOC
[2]  
Beck J, 2004, DUKE MATH J, V123, P335
[3]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[4]   Modules with bounded weight multiplicities for simple Lie algebras [J].
Benkart, G ;
Britten, D ;
Lemire, F .
MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (02) :333-353
[5]   Oscillator versus prefundamental representations. II. Arbitrary higher ranks [J].
Boos, Hermann ;
Goehmann, Frank ;
Kluemper, Andreas ;
Nirov, Khazret S. ;
Razumov, Alexander V. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (09)
[6]   Oscillator versus prefundamental representations [J].
Boos, Hermann ;
Goehmann, Frank ;
Kluemper, Andreas ;
Nirov, Khazret S. ;
Razumov, Alexander V. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
[7]   SIMPLE C-N MODULES WITH MULTIPLICITIES-1 AND APPLICATIONS [J].
BRITTEN, DJ ;
HOOPER, J ;
LEMIRE, FW .
CANADIAN JOURNAL OF PHYSICS, 1994, 72 (7-8) :326-335
[8]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[9]   Twisted quantum affine algebras [J].
Chari, V ;
Pressley, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (02) :461-476
[10]  
Chari V., 1994, GUIDE QUANTUM GROUPS