An Autoencoder Architecture for L-Band Passive Microwave Retrieval of Landscape Freeze-Thaw Cycle

被引:0
作者
Kumawat, Divya [1 ,2 ]
Ebtehaj, Ardeshir [1 ,2 ]
Xu, Xiaolan [3 ]
Colliander, Andreas [3 ]
Kumar, Vipin [4 ]
机构
[1] Univ Minnesota, Dept Civil Environm & Geoengn, Minneapolis, MN 55455 USA
[2] Univ Minnesota, St Anthony Falls Lab, Minneapolis, MN 55455 USA
[3] CALTECH, NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[4] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
美国国家航空航天局;
关键词
Time series analysis; Microwave radiometry; Soil measurements; Snow; Ocean temperature; Land surface; Vegetation mapping; Microwave integrated circuits; Microwave FET integrated circuits; Electromagnetic heating; Climate change; Deep learning; Autoencoders; Remote sensing; Contrastive loss function; convolutional autoencoders; deep learning; L-band microwaves; snow; snow wetness; soil freeze and thaw; Soil Moisture Active Passive (SMAP) satellite; soil remote sensing; time series; SOIL-MOISTURE; NORTHERN-HEMISPHERE; UNFROZEN WATER; TIME-SERIES; PERMAFROST; NETWORK; CLASSIFICATION; TEMPERATURE; SENSITIVITY; RADAR;
D O I
10.1109/TGRS.2025.3530356
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Estimating the landscape and soil freeze-thaw (FT) dynamics in the Northern Hemisphere (NH) is crucial for understanding permafrost response to global warming and changes in regional and global carbon budgets. A new framework for surface FT-cycle retrievals using L-band microwave radiometry based on a deep convolutional autoencoder neural network is presented. This framework defines the landscape FT-cycle retrieval as a time-series anomaly detection problem, considering the frozen states as normal and the thawed states as anomalies. The autoencoder retrieves the FT-cycle probabilistically through supervised reconstruction of the brightness temperature (TB) time series using a contrastive loss function that minimizes (maximizes) the reconstruction error for the peak winter (summer). Using the data provided by the Soil Moisture Active Passive (SMAP) satellite, it is demonstrated that the framework learns to isolate the landscape FT states over different land surface types with varying complexities related to the radiometric characteristics of snow cover, lake-ice phenology, and vegetation canopy. The consistency of the retrievals is assessed over Alaska using in situ observations, demonstrating an 11% improvement in accuracy and reduced uncertainties compared to traditional methods that rely on thresholding the normalized polarization ratio (NPR).
引用
收藏
页数:15
相关论文
共 72 条
[1]   A review of automated methods for detection of myocardial ischemia and infarction using electrocardiogram and electronic health records [J].
Ansari, Sardar ;
Farzaneh, Negar ;
Duda, Marlena ;
Horan, Kelsey ;
Andersson, Hedvig B. ;
Goldberger, Zachary D. ;
Nallamothu, Brahmajee K. ;
Najarian, Kayvan .
IEEE Reviews in Biomedical Engineering, 2017, 10 :264-298
[2]   U.S. Climate Reference Network Soil Moisture and Temperature Observations [J].
Bell, Jesse E. ;
Palecki, Michael A. ;
Baker, C. Bruce ;
Collins, William G. ;
Lawrimore, Jay H. ;
Leeper, Ronald D. ;
Hall, Mark E. ;
Kochendorfer, John ;
Meyers, Tilden P. ;
Wilson, Tim ;
Diamond, Howard J. .
JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (03) :977-988
[3]   Influence of surface water on coarse resolution C-band backscatter: Implications for freeze/thaw retrieval from scatterometer data [J].
Bergstedt, Helena ;
Bartsch, Annett ;
Duguay, Claude R. ;
Jones, Benjamin M. .
REMOTE SENSING OF ENVIRONMENT, 2020, 247
[4]   Increased carbon sequestration by a boreal deciduous forest in years with a warm spring [J].
Black, TA ;
Chen, WJ ;
Barr, AG ;
Arain, MA ;
Chen, Z ;
Nesic, Z ;
Hogg, EH ;
Neumann, HH ;
Yang, PC .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (09) :1271-1274
[5]   EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets [J].
Brodzik, Mary J. ;
Billingsley, Brendan ;
Haran, Terry ;
Raup, Bruce ;
Savoie, Matthew H. .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2012, 1 (01) :32-45
[6]  
Carroll M., 2017, MOD44W MODISTERRA LA, DOI [10.5067/MODIS/MOD44W.006, DOI 10.5067/MODIS/MOD44W.006]
[7]   Development of an operational land water mask for MODIS Collection 6, and influence on downstream data products [J].
Carroll, M. L. ;
DiMiceli, C. M. ;
Townshend, J. R. G. ;
Sohlberg, R. A. ;
Elders, A. I. ;
Devadiga, S. ;
Sayer, A. M. ;
Levy, R. C. .
INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2017, 10 (02) :207-218
[8]   Development and assessment of the SMAP enhanced passive soil moisture product [J].
Chan, S. K. ;
Bindlish, R. ;
O'Neill, P. ;
Jackson, T. ;
Njoku, E. ;
Dunbar, S. ;
Chaubell, J. ;
Piepmeier, J. ;
Yueh, S. ;
Entekhabi, D. ;
Colliander, A. ;
Chen, F. ;
Cosh, M. H. ;
Caldwell, T. ;
Walker, J. ;
Berg, A. ;
McNairn, H. ;
Thibeault, M. ;
Martinez-Fernandez, J. ;
Uldall, F. ;
Seyfried, M. ;
Bosch, D. ;
Starks, P. ;
Collins, C. Holifield ;
Prueger, J. ;
van der Velde, R. ;
Asanuma, J. ;
Palecki, M. ;
Small, E. E. ;
Zreda, M. ;
Calvet, J. ;
Crow, W. T. ;
Kerr, Y. .
REMOTE SENSING OF ENVIRONMENT, 2018, 204 :931-941
[9]  
Chen ZM, 2018, WIREL TELECOMM SYMP
[10]   Deep Learning for Anomaly Detection in Time-Series Data: Review, Analysis, and Guidelines [J].
Choi, Kukjin ;
Yi, Jihun ;
Park, Changhwa ;
Yoon, Sungroh .
IEEE ACCESS, 2021, 9 :120043-120065