Fluorescent protein with environmentally-sensitive fluorescence lifetime for quantitative pH measurement

被引:0
作者
Simonyan, Tatiana R. [1 ]
Protasova, Elena A. [2 ]
Mamontova, Anastasia, V
Shakhov, Aleksander M. [3 ]
Bodunova, Daria, V
Sidorenko, Svetlana, V [2 ]
Maksimov, Eugene G. [2 ]
Bogdanov, Alexey M. [1 ,4 ]
机构
[1] Shemyakin Ovchinnikov Inst Bioorgan Chem, Moscow 117997, Russia
[2] MV Lomonosov Moscow State Univ, Fac Biol, Moscow 119992, Russia
[3] NN Semenov Fed Res Ctr Chem Phys, Bio &Nanophoton Lab, Moscow 119991, Moscow, Russia
[4] Izmir Inst Technol, Dept Photon, TR-35430 Izmir, Turkiye
基金
俄罗斯科学基金会;
关键词
Fluorescence lifetime; FLIM; pH measurement; Genetically encoded indicators; Live-cell imaging; INTRACELLULAR PH; IMAGING MICROSCOPY; CARBON DOTS; SENSOR; MITOCHONDRIAL; INDICATOR; CELLS; NANOPARTICLES; MECHANISM; VARIANTS;
D O I
10.1016/j.abb.2025.110350
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intracellular pH is a key factor in cell homeostasis, regulated within specific compartments, and changes in pH can result from or affect biochemical pathways. This study explores a yellow fluorescent protein EYFP-G65T as a core for a time-resolved pH-indicator. Among the tested designs-a circular permutant, a chimeric SypHer3s-like construct, and an unmodified protein-the unmodified EYFP-G65T performed best for live-cell imaging. Upon two-photon excitation, purified EYFP-G65T exhibited a 4.5-fold increase in mean fluorescence lifetime across pH 5.5-7 and a 7-fold change in its major component's lifetime from pH 6.5-8. Using this indicator, we measured pH values ranging from 6 to 8 in various organelles, and mapped pH shifts in mitochondria and the Golgi apparatus in response to stimuli.
引用
收藏
页数:12
相关论文
共 72 条
  • [1] Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins
    Axelsson, MAB
    Karlsson, NG
    Steel, DM
    Ouwendijk, J
    Nilsson, T
    Hansson, GC
    [J]. GLYCOBIOLOGY, 2001, 11 (08) : 633 - 644
  • [2] Fluorescent pH Sensor Based on Ag@SiO2 Core-Shell Nanoparticle
    Bai, Zhenhua
    Chen, Rui
    Si, Peng
    Huang, Youju
    Sun, Handong
    Kim, Dong-Hwan
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (12) : 5856 - 5860
  • [3] Circular permutation and receptor insertion within green fluorescent proteins
    Baird, GS
    Zacharias, DA
    Tsien, RY
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) : 11241 - 11246
  • [4] Development of a molecular bioswitch using fluorescence lifetime imaging: Incremental activation of fluorescein diacetate
    Barnoy, Eran A.
    Popovtzer, Rachela
    Fixler, Dror
    [J]. JOURNAL OF BIOPHOTONICS, 2018, 11 (02)
  • [5] Intracellular pH measurements made simple by fluorescent protein probes and the phasor approach to fluorescence lifetime imaging
    Battisti, Antonella
    Digman, Michelle A.
    Gratton, Enrico
    Storti, Barbara
    Beltram, Fabio
    Bizzarri, Ranieri
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (42) : 5127 - 5129
  • [6] Genetically encoded fluorescent indicator for intracellular hydrogen peroxide
    Belousov, VV
    Fradkov, AF
    Lukyanov, KA
    Staroverov, DB
    Shakhbazov, KS
    Terskikh, AV
    Lukyanov, S
    [J]. NATURE METHODS, 2006, 3 (04) : 281 - 286
  • [7] Illumination of the Spatial Order of Intracellular pH by Genetically Encoded pH-Sensitive Sensors
    Bencina, Mojca
    [J]. SENSORS, 2013, 13 (12) : 16736 - 16758
  • [8] Fluorescence Lifetime Measurements and Biological Imaging
    Berezin, Mikhail Y.
    Achilefu, Samuel
    [J]. CHEMICAL REVIEWS, 2010, 110 (05) : 2641 - 2684
  • [9] Green fluorescent protein based pH indicators for in vivo use: a review
    Bizzarri, Ranieri
    Serresi, Michela
    Luin, Stefano
    Beltram, Fabio
    [J]. ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 393 (04) : 1107 - 1122
  • [10] Regulation of intracellular pH
    Boron, WF
    [J]. ADVANCES IN PHYSIOLOGY EDUCATION, 2004, 28 (04) : 160 - 179