Reinforcement Learning to Optimize Ventilator Settings for Patients on Invasive Mechanical Ventilation: Retrospective Study

被引:6
作者
Liu, Siqi [1 ]
Xu, Qianyi [2 ]
Xu, Zhuoyang [3 ]
Liu, Zhuo [3 ]
Sun, Xingzhi [3 ]
Xie, Guotong [3 ]
Feng, Mengling [2 ,4 ]
See, Kay Choong [5 ]
机构
[1] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore, Singapore
[2] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, 12 Sci Dr 2, Singapore 117549, Singapore
[3] Ping Healthcare Technol, Beijing, Peoples R China
[4] Natl Univ Singapore, Inst Data Sci, Singapore, Singapore
[5] Natl Univ Singapore Hosp, Dept Med, Div Resp & Crit Care Med, Singapore, Singapore
关键词
mechanical ventilation; reinforcement learning; artificial intelligence; validation study; critical care; treatment; intensive care unit; critically ill; patient; monitoring; database; mortality rate; decision support; support tool; survival; prognosis; respiratory support; RESPIRATORY-DISTRESS-SYNDROME; OXYGEN-THERAPY; MORTALITY; PRESSURE; TARGETS; CARE;
D O I
10.2196/44494
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: One of the significant changes in intensive care medicine over the past 2 decades is the acknowledgment that improper mechanical ventilation settings substantially contribute to pulmonary injury in critically ill patients. Artificial intelligence (AI) solutions can optimize mechanical ventilation settings in intensive care units (ICUs) and improve patient outcomes. Specifically, machine learning algorithms can be trained on large datasets of patient information and mechanical ventilation settings. These algorithms can then predict patient responses to different ventilation strategies and suggest personalized ventilation settings for individual patients. Objective: In this study, we aimed to design and evaluate an AI solution that could tailor an optimal ventilator strategy for each critically ill patient who requires mechanical ventilation. Methods: We proposed a reinforcement learning-based AI solution using observational data from multiple ICUs in the United States. The primary outcome was hospital mortality. Secondary outcomes were the proportion of optimal oxygen saturation and the proportion of optimal mean arterial blood pressure. We trained our AI agent to recommend low, medium, and high levels of 3 ventilator settings-positive end-expiratory pressure, fraction of inspired oxygen, and ideal body weight-adjusted tidal volume-according to patients' health conditions. We defined a policy as rules guiding ventilator setting changes given specific clinical scenarios. Off-policy evaluation metrics were applied to evaluate the AI policy. Results: We studied 21,595 and 5105 patients' ICU stays from the e-Intensive Care Unit Collaborative Research (eICU) and Medical Information Mart for Intensive Care IV (MIMIC-IV) databases, respectively. Using the learned AI policy, we estimated the hospital mortality rate (eICU 12.1%, SD 3.1%; MIMIC-IV 29.1%, SD 0.9%), the proportion of optimal oxygen saturation (eICU 58.7%, SD 4.7%; MIMIC-IV 49%, SD 1%), and the proportion of optimal mean arterial blood pressure (eICU 31.1%, SD4.5%; MIMIC-IV 41.2%, SD 1%). Based on multiple quantitative and qualitative evaluation metrics, our proposed AI solution outperformed observed clinical practice. Conclusions: Our study found that customizing ventilation settings for individual patients led to lower estimated hospital mortality rates compared to actual rates. This highlights the potential effectiveness of using reinforcement learning methodology to develop AI models that analyze complex clinical data for optimizing treatment parameters. Additionally, our findings suggest the integration of this model into a clinical decision support system for refining ventilation settings, supporting the need for prospective validation trials.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2017, AmJ Respir Crit Care Med, V195, P1540, DOI [10.1164/rccm.19511-rratum, DOI 10.1164/RCCM.19511-RRATUM]
[2]   Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial [J].
Asfar, Pierre ;
Schortgen, Frederique ;
Boisrame-Helms, Julie ;
Charpentier, Julien ;
Guerot, Emmanuel ;
Megarbane, Bruno ;
Grimaldi, David ;
Grelon, Fabien ;
Anguel, Nadia ;
Lasocki, Sigismond ;
Henry-Lagarrigue, Matthieu ;
Gonzalez, Frederic ;
Legay, Francois ;
Guitton, Christophe ;
Schenck, Maleka ;
Doise, Jean Marc ;
Devaquet, Jerome ;
Van Der Linden, Thierry ;
Chatellier, Delphine ;
Rigaud, Jean Philippe ;
Dellamonica, Jean ;
Tamion, Fabienne ;
Meziani, Ferhat ;
Mercat, Alain ;
Dreyfuss, Didier ;
Seegers, Valerie ;
Radermacher, Peter .
LANCET RESPIRATORY MEDICINE, 2017, 5 (03) :180-190
[3]   Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome [J].
Barrot, Loic ;
Asfar, Pierre ;
Mauny, Frederic ;
Winiszewski, Hadrien ;
Montini, Florent ;
Badie, Julio ;
Quenot, Jean-Pierre ;
Pili-Floury, Sebastien ;
Bouhemad, Belaid ;
Louis, Guillaume ;
Souweine, Bertrand ;
Collange, Olivier ;
Pottecher, Julien ;
Levy, Bruno ;
Puyraveau, Marc ;
Vettoretti, Lucie ;
Constantin, Jean-Michel ;
Capellier, Gilles .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (11) :999-1008
[4]   Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries [J].
Bellani, Giacomo ;
Laffey, John G. ;
Pham, Tai ;
Fan, Eddy ;
Brochard, Laurent ;
Esteban, Andres ;
Gattinoni, Luciano ;
van Haren, Frank ;
Larsson, Anders ;
McAuley, Daniel F. ;
Ranieri, Marco ;
Rubenfeld, Gordon ;
Thompson, B. Taylor ;
Wrigge, Hermann ;
Slutsky, Arthur S. ;
Pesenti, Antonio .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (08) :788-800
[5]   Higher vs Lower Positive End-Expiratory Pressure in Patients With Acute Lung Injury and Acute Respiratory Distress Syndrome Systematic Review and Meta-analysis [J].
Briel, Matthias ;
Meade, Maureen ;
Mercat, Alain ;
Brower, Roy G. ;
Talmor, Daniel ;
Walter, Stephen D. ;
Slutsky, Arthur S. ;
Pullenayegum, Eleanor ;
Zhou, Qi ;
Cook, Deborah ;
Brochard, Laurent ;
Richard, Jean-Christophe M. ;
Lamontagne, Francois ;
Bhatnagar, Neera ;
Stewart, Thomas E. ;
Guyatt, Gordon .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2010, 303 (09) :865-873
[6]   Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial [J].
Constantin, Jean-Michel ;
Jabaudon, Matthieu ;
Lefrant, Jean-Yves ;
Jaber, Samir ;
Quenot, Jean-Pierre ;
Langeron, Olivier ;
Ferrandiere, Martine ;
Grelon, Fabien ;
Seguin, Philippe ;
Ichai, Carole ;
Veber, Benoit ;
Souweine, Bertrand ;
Uberti, Thomas ;
Lasocki, Sigismond ;
Legay, Francois ;
Leone, Marc ;
Eisenmann, Nathanael ;
Dahyot-Fizelier, Claire ;
Dupont, Herve ;
Asehnoune, Karim ;
Sossou, Achille ;
Chanques, Gerald ;
Muller, Laurent ;
Bazin, Jean-Etienne ;
Monsel, Antoine ;
Borao, Lucile ;
Garcier, Jean-Marc ;
Rouby, Jean-Jacques ;
Pereira, Bruno ;
Futier, Emmanuel .
LANCET RESPIRATORY MEDICINE, 2019, 7 (10) :870-880
[7]   Oxygen Targets During Mechanical Ventilation in the ICU: A Systematic Review and Meta-Analysis [J].
Cumpstey, Andrew F. ;
Oldman, Alex H. ;
Martin, Daniel S. ;
Smith, Andrew ;
Grocott, Michael P. W. .
CRITICAL CARE EXPLORATIONS, 2022, 4 (04) :E0652
[8]  
Fujimoto S, 2019, PR MACH LEARN RES, V97
[9]   Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit The Oxygen-ICU Randomized Clinical Trial [J].
Girardis, Massimo ;
Busani, Stefano ;
Damiani, Elisa ;
Donati, Abele ;
Rinaldi, Laura ;
Marudi, Andrea ;
Morelli, Andrea ;
Antonelli, Massimo ;
Singer, Mervyn .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (15) :1583-1589
[10]  
Hylands M, 2017, CAN J ANESTH, V64, P703, DOI 10.1007/s12630-017-0877-1