Beamforming optimization via quantum algorithms using Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm

被引:0
作者
Dhara, Bidisha [1 ]
Agrawal, Monika [1 ]
Roy, Sumantra Dutta [1 ]
机构
[1] Indian Inst Technol Delhi, New Delhi, India
来源
IET QUANTUM COMMUNICATION | 2025年 / 6卷 / 01期
关键词
quantum computing; quantum computing techniques;
D O I
10.1049/qtc2.12120
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the application of quantum algorithms, specifically the Variational Quantum Eigensolver (VQE) and the Quantum Approximate Optimization Algorithm (QAOA), to design optimal sensor configurations for beamforming, enhancing signal quality and overall system performance. We propose two distinct optimization formulations: one aimed at maximising array gain while the other aimed at maximising signal-to-noise-interference ratio (SINR). Our findings show that the outputs obtained from quantum algorithms are consistent with those derived from classical methods.
引用
收藏
页数:9
相关论文
共 20 条
[1]  
[Anonymous], Aer simulator
[2]  
[Anonymous], Efficient SU(2) ansatz
[3]  
[Anonymous], Pennylane qml.device
[4]  
Boyd S. P., Convex Optimization
[5]   HIGH-RESOLUTION FREQUENCY-WAVENUMBER SPECTRUM ANALYSIS [J].
CAPON, J .
PROCEEDINGS OF THE IEEE, 1969, 57 (08) :1408-&
[6]   A Tutorial on Quantum Approximate Optimization Algorithm (QAOA): Fundamentals and Applications [J].
Choi, Jaeho ;
Kim, Joongheon .
2019 10TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC): ICT CONVERGENCE LEADING THE AUTONOMOUS FUTURE, 2019, :138-142
[7]  
Ciaramelletti C., 2024, Detecting quasidegenerate ground states in 1d topological models via vqe
[8]  
Do H, 2022, Arxiv, DOI arXiv:2105.04648
[9]  
Farhi E, 2014, Arxiv, DOI [arXiv:1411.4028, 10.48550/arXiv.1411.4028]
[10]  
Johnson DH., 1993, Array signal processing: concepts and techniques