SIAVC: Semi-Supervised Framework for Industrial Accident Video Classification

被引:0
作者
Li, Zuoyong [1 ]
Lin, Qinghua [2 ]
Fan, Haoyi [3 ]
Zhao, Tiesong [4 ]
Zhang, David [5 ]
机构
[1] Minjiang Univ, Sch Comp & Big Data, Fujian Prov Key Lab Informat Proc & Intelligent Co, Fuzhou 350121, Peoples R China
[2] Fujian Univ Technol, Sch Comp Sci & Math, Fuzhou 350118, Peoples R China
[3] Zhengzhou Univ, Sch Comp & Artificial Intelligence, Zhengzhou 45000, Peoples R China
[4] Fuzhou Univ, Fujian Key Lab Intelligent Proc & Wireless Transmi, Fuzhou 350108, Peoples R China
[5] Chinese Univ Hong Kong Shenzhen, Sch Data Sci, Shenzhen 518172, Peoples R China
基金
中国国家自然科学基金;
关键词
Video classification; consistency regularization; distribution alignment; deep learning;
D O I
10.1109/TCSVT.2024.3490597
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Semi-supervised learning suffers from the imbalance of labeled and unlabeled training data in the video surveillance scenario. In this paper, we propose a new semi-supervised learning method called SIAVC for industrial accident video classification. Specifically, we design a video augmentation module called the Super Augmentation Block (SAB). SAB adds Gaussian noise and randomly masks video frames according to historical loss on the unlabeled data for model optimization. Then, we propose a Video Cross-set Augmentation Module (VCAM) to generate diverse pseudo-label samples from the high-confidence unlabeled samples, which alleviates the mismatch of sampling experience and provides high-quality training data. Additionally, we construct a new industrial accident surveillance video dataset with frame-level annotation, namely ECA9, to evaluate our proposed method. Compared with the state-of-the-art semi-supervised learning based methods, SIAVC demonstrates outstanding video classification performance, achieving 88.76% and 89.13% accuracy on ECA9 and Fire Detection datasets, respectively. The source code and the constructed dataset ECA9 will be released in https://github.com/AlchemyEmperor/SIAVC.
引用
收藏
页码:2603 / 2615
页数:13
相关论文
共 44 条
  • [1] Berthelot D., 2019, ICLR
  • [2] Berthelot D, 2019, ADV NEUR IN, V32
  • [3] Cao KD, 2020, PROC CVPR IEEE, P10615, DOI 10.1109/CVPR42600.2020.01063
  • [4] Video Classification With CNNs: Using the Codec as a Spatio-Temporal Activity Sensor
    Chadha, Aaron
    Abbas, Alhabib
    Andreopoulos, Yiannis
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (02) : 475 - 485
  • [5] Chen H, 2023, Arxiv, DOI arXiv:2301.10921
  • [6] SNIS: A Signal Noise Separation-Based Network for Post-Processed Image Forgery Detection
    Chen, Jiaxin
    Liao, Xin
    Wang, Wei
    Qian, Zhenxing
    Qin, Zheng
    Wang, Yaonan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (02) : 935 - 951
  • [7] Randaugment: Practical automated data augmentation with a reduced search space
    Cubuk, Ekin D.
    Zoph, Barret
    Shlens, Jonathon
    Le, Quoc, V
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3008 - 3017
  • [8] Cubuk ED, 2019, Arxiv, DOI arXiv:1805.09501
  • [9] Improving Fire Detection Reliability by a Combination of Videoanalytics
    Di Lascio, Rosario
    Greco, Antonio
    Saggese, Alessia
    Vento, Mario
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I, 2014, 8814 : 477 - 484
  • [10] Spatio-Temporal Flame Modeling and Dynamic Texture Analysis for Automatic Video-Based Fire Detection
    Dimitropoulos, Kosmas
    Barmpoutis, Panagiotis
    Grammalidis, Nikos
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2015, 25 (02) : 339 - 351