Application of Artificial Intelligence in Thoracic Radiology: A Narrative Review

被引:1
作者
Lim, Woo Hyeon [1 ]
Kim, Hyungjin [1 ,2 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
关键词
Artificial Intelligence; Deep Learning; Thoracic Radiology; OBSTRUCTIVE PULMONARY-DISEASE; LARGE LANGUAGE MODELS; LUNG-CANCER; QUANTITATIVE CT; CLASSIFICATION; TUBERCULOSIS; MULTICENTER; IMAGES; AI;
D O I
10.4046/trd.2024.0062
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Thoracic radiology has emerged as a primary field in which artificial intelligence (AI) is extensively researched. Recent advancements highlight the potential to enhance radiologists' performance through AI. AI aids in detecting and classifying abnormalities, and in quantifying both normal and abnormal anatomical structures. Additionally, it facilitates prognostication by leveraging these quantitative values. This review article will discuss the recent achievements of AI in thoracic radiology, focusing primarily on deep learning, and explore the current limitations and future directions of this cutting-edge technique.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 106 条
[81]   Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline [J].
Raghu, Ganesh ;
Remy-Jardin, Martine ;
Richeldi, Luca ;
Thomson, Carey C. ;
Inoue, Yoshikazu ;
Johkoh, Takeshi ;
Kreuter, Michael ;
Lynch, David A. ;
Maher, Toby M. ;
Martinez, Fernando J. ;
Molina-Molina, Maria ;
Myers, Jeffrey L. ;
Nicholson, Andrew G. ;
Ryerson, Christopher J. ;
Strek, Mary E. ;
Troy, Lauren K. ;
Wijsenbeek, Marlies ;
Mammen, Manoj J. ;
Hossain, Tanzib ;
Bissell, Brittany D. ;
Herman, Derrick D. ;
Hon, Stephanie M. ;
Kheir, Fayez ;
Khor, Yet H. ;
Macrea, Madalina ;
Antoniou, Katerina M. ;
Bouros, Demosthenes ;
Buendia-Roldan, Ivette ;
Caro, Fabian ;
Crestani, Bruno ;
Ho, Lawrence ;
Morisset, Julie ;
Olson, Amy L. ;
Podolanczuk, Anna ;
Poletti, Venerino ;
Selman, Moises ;
Ewing, Thomas ;
Jones, Stephen ;
Knight, Shandra L. ;
Ghazipura, Marya ;
Wilson, Kevin C. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205 (09) :E18-E47
[82]   Deep Learning to Estimate Biological Age From Chest Radiographs [J].
Raghu, Vineet K. ;
Weiss, Jakob ;
Hoffmann, Udo ;
Aerts, Hugo J. W. L. ;
Lu, Michael T. .
JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) :2226-2236
[83]   The Current and Future State of AI Interpretation of Medical Images [J].
Rajpurkar, Pranav ;
Lungren, Matthew P. .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 388 (21) :1981-1990
[84]   Genetic Epidemiology of COPD (COPDGene) Study Design [J].
Regan, Elizabeth A. ;
Hokanson, John E. ;
Murphy, James R. ;
Make, Barry ;
Lynch, David A. ;
Beaty, Terri H. ;
Curran-Everett, Douglas ;
Silverman, Edwin K. ;
Crapo, James D. .
COPD-JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2010, 7 (01) :32-38
[85]   Federated learning for medical imaging radiology [J].
Rehman, Muhammad Habib Ur ;
Pinaya, Walter Hugo Lopez ;
Nachev, Parashkev ;
Teo, James T. ;
Ourselin, Sebastin ;
Cardoso, M. Jorge .
BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150)
[86]   Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer (JCOG0802/WJOG4607L) : a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial [J].
Saji, Hisashi ;
Okada, Morihito ;
Tsuboi, Masahiro ;
Nakajima, Ryu ;
Suzuki, Kenji ;
Aokage, Keiju ;
Aoki, Tadashi ;
Okami, Jiro ;
Yoshino, Ichiro ;
Ito, Hiroyuki ;
Okumura, Norihito ;
Yamaguchi, Masafumi ;
Ikeda, Norihiko ;
Wakabayashi, Masashi ;
Nakamura, Kenichi ;
Fukuda, Haruhiko ;
Nakamura, Shinichiro ;
Mitsudomi, Tetsuya ;
Watanabe, Shun-Ichi ;
Asamura, Hisao .
LANCET, 2022, 399 (10335) :1607-1617
[87]   Deep learning-based automated detection of pulmonary embolism on CT pulmonary angiograms: No significant effects on report communication times and patient turnaround in the emergency department nine months after technical implementation [J].
Schmuelling, Lena ;
Franzeck, Fabian C. ;
Nickel, Christian H. ;
Mansella, Gregory ;
Bingisser, Roland ;
Schmidt, Noemi ;
Stieltjes, Bram ;
Bremerich, Jens ;
Sauter, Alexander W. ;
Weikert, Thomas ;
Sommer, Gregor .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 141
[88]   Stronger Associations of Centrilobular Than Paraseptal Emphysema With Longitudinal Changes in Diffusing Capacity and Mortality in COPD [J].
Shiraishi, Yusuke ;
Tanabe, Naoya ;
Shimizu, Kaoruko ;
Oguma, Akira ;
Shima, Hiroshi ;
Sakamoto, Ryo ;
Yamazaki, Hajime ;
Oguma, Tsuyoshi ;
Sato, Atsuyasu ;
Suzuki, Masaru ;
Makita, Hironi ;
Muro, Shigeo ;
Nishimura, Masaharu ;
Sato, Susumu ;
Konno, Satoshi ;
Hirai, Toyohiro .
CHEST, 2023, 164 (02) :327-338
[89]   Deep learning in chest radiography: Detection of findings and presence of change [J].
Singh, Ramandeep ;
Kalra, Mannudeep K. ;
Nitiwarangkul, Chayanin ;
Patti, John A. ;
Homayounieh, Fatemeh ;
Padole, Atul ;
Rao, Pooja ;
Putha, Preetham ;
Muse, Victorine V. ;
Sharma, Amita ;
Digumarthy, Subba R. .
PLOS ONE, 2018, 13 (10)
[90]   Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach [J].
Singla, Sumedha ;
Gong, Mingming ;
Riley, Craig ;
Sciurba, Frank ;
Batmanghelich, Kayhan .
MEDICAL PHYSICS, 2021, 48 (03) :1168-1181