Application of Artificial Intelligence in Thoracic Radiology: A Narrative Review

被引:1
作者
Lim, Woo Hyeon [1 ]
Kim, Hyungjin [1 ,2 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiol, Seoul, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, 101 Daehak Ro, Seoul 03080, South Korea
关键词
Artificial Intelligence; Deep Learning; Thoracic Radiology; OBSTRUCTIVE PULMONARY-DISEASE; LARGE LANGUAGE MODELS; LUNG-CANCER; QUANTITATIVE CT; CLASSIFICATION; TUBERCULOSIS; MULTICENTER; IMAGES; AI;
D O I
10.4046/trd.2024.0062
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Thoracic radiology has emerged as a primary field in which artificial intelligence (AI) is extensively researched. Recent advancements highlight the potential to enhance radiologists' performance through AI. AI aids in detecting and classifying abnormalities, and in quantifying both normal and abnormal anatomical structures. Additionally, it facilitates prognostication by leveraging these quantitative values. This review article will discuss the recent achievements of AI in thoracic radiology, focusing primarily on deep learning, and explore the current limitations and future directions of this cutting-edge technique.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 106 条
[91]   Evaluation of chest X-ray with automated interpretation algorithms for mass tuberculosis screening in prisons: A cross-sectional study [J].
Soares, Thiego Ramon ;
de Oliveira, Roberto Dias ;
Liu, Yiran E. ;
Santos, Andrea da Silva ;
Pereira dos Santos, Paulo Cesar ;
Soares Monte, Luma Ravena ;
de Oliveira, Lissandra Maia ;
Park, Chang Min ;
Hwang, Eui Jin ;
Andrews, Jason R. ;
Croda, Julio .
LANCET REGIONAL HEALTH-AMERICAS, 2023, 17
[92]   Deep learning for pulmonary embolism detection on computed tomography pulmonary angiogram: a systematic review and meta-analysis [J].
Soffer, Shelly ;
Klang, Eyal ;
Shimon, Orit ;
Barash, Yiftach ;
Cahan, Noa ;
Greenspana, Hayit ;
Konen, Eli .
SCIENTIFIC REPORTS, 2021, 11 (01)
[93]   Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study [J].
Sung, Jinkyeong ;
Park, Sohee ;
Lee, Sang Min ;
Bae, Woong ;
Park, Beomhee ;
Jung, Eunkyung ;
Seo, Joon Beom ;
Jung, Kyu-Hwan .
RADIOLOGY, 2021, 299 (02) :450-459
[94]   Quantitative Assessment of Erector Spinae Muscles in Patients with Chronic Obstructive Pulmonary Disease Novel Chest Computed Tomography-derived Index for Prognosis [J].
Tanimura, Kazuya ;
Sato, Susumu ;
Fuseya, Yoshinori ;
Hasegawa, Koichi ;
Uemasu, Kiyoshi ;
Sato, Atsuyasu ;
Oguma, Tsuyoshi ;
Hirai, Toyohiro ;
Mishima, Michiaki ;
Muro, Shigeo .
ANNALS OF THE AMERICAN THORACIC SOCIETY, 2016, 13 (03) :334-341
[95]   Deep Learning for Diagnosis and Segmentation of Pneumothorax: The Results on the Kaggle Competition and Validation Against Radiologists [J].
Tolkachev, Alexey ;
Sirazitdinov, Ilyas ;
Kholiavchenko, Maksym ;
Mustafaev, Tamerlan ;
Ibragimov, Bulat .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (05) :1660-1672
[96]   The IASLC Lung Cancer Staging Project: Proposals for Coding T Categories for Subsolid Nodules and Assessment of Tumor Size in Part-Solid Tumors in the Forthcoming Eighth Edition of the TNM Classification of Lung Cancer [J].
Travis, William D. ;
Asamura, Hisao ;
Bankier, Alexander A. ;
Beasley, Mary Beth ;
Detterbeck, Frank ;
Flieder, Douglas B. ;
Goo, Jin Mo ;
MacMahon, Heber ;
Naidich, David ;
Nicholson, Andrew G. ;
Powell, Charles A. ;
Prokop, Mathias ;
Rami-Porta, Ramon ;
Rusch, Valerie ;
van Schil, Paul ;
Yatabe, Yasushi .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (08) :1204-1223
[97]   Prior CT Improves Deep Learning for Malignancy Risk Estimation of Screening-detected Pulmonary Nodules [J].
Venkadesh, Kiran Vaidhya ;
Aleef, Tajwar Abrar ;
Scholten, Ernst T. ;
Saghir, Zaigham ;
Silva, Mario ;
Sverzellati, Nicola ;
Pastorino, Ugo ;
van Ginneken, Bram ;
Prokop, Mathias ;
Jacobs, Colin .
RADIOLOGY, 2023, 308 (02)
[98]   Deep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography [J].
Walsh, Simon L. F. ;
Mackintosh, John A. ;
Calandriello, Lucio ;
Silva, Mario ;
Sverzellati, Nicola ;
Larici, Anna Rita ;
Humphries, Stephen M. ;
Lynch, David A. ;
Jo, Helen E. ;
Glaspole, Ian ;
Grainge, Christopher ;
Goh, Nicole ;
Hopkins, Peter M. A. ;
Moodley, Yuben ;
Reynolds, Paul N. ;
Zappala, Christopher ;
Keir, Gregory ;
Cooper, Wendy A. ;
Mahar, Annabelle M. ;
Ellis, Samantha ;
Wells, Athol U. ;
Corte, Tamera J. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 206 (07) :883-891
[99]   Deep learning for classifying fibrotic lung disease on high-resolution computed tomography: a case-cohort study [J].
Walsh, Simon L. F. ;
Calandriello, Lucio ;
Silva, Mario ;
Sverzellati, Nicola .
LANCET RESPIRATORY MEDICINE, 2018, 6 (11) :837-845
[100]   Deep-Learning for Epicardial Adipose Tissue Assessment With Computed Tomography Implications for Cardiovascular Risk Prediction [J].
West, Henry W. ;
Siddique, Muhammad ;
Williams, Michelle C. ;
Volpe, Lucrezia ;
Desai, Ria ;
Lyasheva, Maria ;
Thomas, Sheena ;
Dangas, Katerina ;
Kotanidis, Christos P. ;
Tomlins, Pete ;
Mahon, Ciara ;
Kardos, Attila ;
Adlam, David ;
Graby, John ;
Rodrigues, Jonathan C. L. ;
Shirodaria, Cheerag ;
Deanfield, John ;
Mehta, Nehal N. ;
Neubauer, Stefan ;
Channon, Keith M. ;
Desai, Milind Y. ;
Nicol, Edward D. ;
Newby, David E. ;
Antoniades, Charalambos .
JACC-CARDIOVASCULAR IMAGING, 2023, 16 (06) :800-816