首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
A localization theorem for cyclic equivariant K-theory
被引:0
作者
:
Carlisle, Jack
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Notre Dame, Math Dept, 255 Hurley Bldg, South Bend, IN 46556 USA
Univ Notre Dame, Math Dept, 255 Hurley Bldg, South Bend, IN 46556 USA
Carlisle, Jack
[
1
]
机构
:
[1]
Univ Notre Dame, Math Dept, 255 Hurley Bldg, South Bend, IN 46556 USA
来源
:
JOURNAL OF HOMOTOPY AND RELATED STRUCTURES
|
2025年
关键词
:
Equivariant K-theory;
D O I
:
10.1007/s40062-025-00368-7
中图分类号
:
O1 [数学];
学科分类号
:
0701 ;
070101 ;
摘要
:
For a finite cyclic group Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document}, we identify Greenlees' equivariant connective K-theory kUCn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kU_{C_n}$$\end{document} as an RO(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RO(C_n)$$\end{document}-graded localization of the actual connective cover of KUCn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KU_{C_n}$$\end{document}.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 5 条
[1]
Equivariant formal group laws
Cole, M
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Cole, M
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Greenlees, JPC
Kriz, I
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Kriz, I
[J].
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY,
2000,
81
: 355
-
386
[2]
Equivariant connective K-theory for compact Lie groups
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
JOURNAL OF PURE AND APPLIED ALGEBRA,
2004,
187
(1-3)
: 129
-
152
[3]
Equivariant forms of connective K-theory
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
TOPOLOGY,
1999,
38
(05)
: 1075
-
1092
[4]
Multiplicative equivariant formal group laws
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
JOURNAL OF PURE AND APPLIED ALGEBRA,
2001,
165
(02)
: 183
-
200
[5]
Schwede S., 2018, New Mathematical Monographs, V34
←
1
→
共 5 条
[1]
Equivariant formal group laws
Cole, M
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Cole, M
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Greenlees, JPC
Kriz, I
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
Kriz, I
[J].
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY,
2000,
81
: 355
-
386
[2]
Equivariant connective K-theory for compact Lie groups
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
Univ Sheffield, Dept Pure Math, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
JOURNAL OF PURE AND APPLIED ALGEBRA,
2004,
187
(1-3)
: 129
-
152
[3]
Equivariant forms of connective K-theory
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
TOPOLOGY,
1999,
38
(05)
: 1075
-
1092
[4]
Multiplicative equivariant formal group laws
Greenlees, JPC
论文数:
0
引用数:
0
h-index:
0
机构:
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Sch Math & Stat, Sheffield S3 7RH, S Yorkshire, England
Greenlees, JPC
[J].
JOURNAL OF PURE AND APPLIED ALGEBRA,
2001,
165
(02)
: 183
-
200
[5]
Schwede S., 2018, New Mathematical Monographs, V34
←
1
→