A localization theorem for cyclic equivariant K-theory

被引:0
作者
Carlisle, Jack [1 ]
机构
[1] Univ Notre Dame, Math Dept, 255 Hurley Bldg, South Bend, IN 46556 USA
关键词
Equivariant K-theory;
D O I
10.1007/s40062-025-00368-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a finite cyclic group Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_n$$\end{document}, we identify Greenlees' equivariant connective K-theory kUCn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$kU_{C_n}$$\end{document} as an RO(Cn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$RO(C_n)$$\end{document}-graded localization of the actual connective cover of KUCn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KU_{C_n}$$\end{document}.
引用
收藏
页码:287 / 292
页数:6
相关论文
共 5 条