Task Offloading Strategy for UAV-Assisted Mobile Edge Computing with Covert Transmission

被引:0
|
作者
Hu, Zhijuan [1 ]
Zhou, Dongsheng [1 ]
Shen, Chao [1 ]
Wang, Tingting [2 ]
Liu, Liqiang [1 ]
机构
[1] Xian Technol Univ, Sch Comp Sci & Engn, Xian 710021, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
来源
ELECTRONICS | 2025年 / 14卷 / 03期
基金
中国国家自然科学基金;
关键词
mobile edge computing; cover communication; unmanned aerial vehicle; deep deterministic policy gradient; prioritized experience replay; RESOURCE-ALLOCATION; OPTIMIZATION; POWER;
D O I
10.3390/electronics14030446
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Task offloading strategies for unmanned aerial vehicle (UAV) -assisted mobile edge computing (MEC) systems have emerged as a promising solution for computationally intensive applications. However, the broadcast and open nature of radio transmissions makes such systems vulnerable to eavesdropping threats. Therefore, developing strategies that can perform task offloading in a secure communication environment is critical for both ensuring the security and optimizing the performance of MEC systems. In this paper, we first design an architecture that utilizes covert communication techniques to guarantee that a UAV-assisted MEC system can securely offload highly confidential tasks from the relevant user equipment (UE) and calculations. Then, utilizing the Markov Decision Process (MDP) as a framework and incorporating the Prioritized Experience Replay (PER) mechanism into the Deep Deterministic Policy Gradient (DDPG) algorithm, a PER-DDPG algorithm is proposed, aiming to minimize the maximum processing delay of the system and the correct detection rate of the warden by jointly optimizing resource allocation, the movement of the UAV base station (UAV-BS), and the transmit power of the jammer. Simulation results demonstrate the convergence and effectiveness of the proposed approach. Compared to baseline algorithms such as Deep Q-Network (DQN) and DDPG, the PER-DDPG algorithm achieves significant performance improvements, with an average reward increase of over 16% compared to DDPG and over 53% compared to DQN. Furthermore, PER-DDPG exhibits the fastest convergence speed among the three algorithms, highlighting its efficiency in optimizing task offloading and communication security.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] UAV-Assisted Task Offloading in Edge Computing
    Zhang, Junna
    Zhang, Guoxian
    Wang, Xinxin
    Zhao, Xiaoyan
    Yuan, Peiyan
    Jin, Hu
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 5559 - 5574
  • [2] Task Offloading and Trajectory Optimization for UAV-Assisted Mobile Edge Computing
    Shi, Mengmeng
    Xing, Yanchao
    Guo, Xueli
    Zhu, Xuerui
    Zhu, Ziyao
    Zhou, Jiaqi
    2024 INTERNATIONAL CONFERENCE ON UBIQUITOUS COMMUNICATION, UCOM 2024, 2024, : 432 - 437
  • [3] UAV-Assisted Mobile Edge Computing: Optimal Design of UAV Altitude and Task Offloading
    Hui, Min
    Chen, Jian
    Yang, Long
    Lv, Lu
    Jiang, Hai
    Al-Dhahir, Naofal
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 13633 - 13647
  • [4] Joint Trajectory Optimization and Task Offloading for UAV-Assisted Mobile Edge Computing
    Wang, Yipeng
    Liu, Yiming
    Zhang, Jiaxiang
    Liu, Baoling
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [5] Energy Efficient Deployment and Task Offloading for UAV-Assisted Mobile Edge Computing
    Lu, Yangguang
    Chen, Xin
    Zhao, Fengjun
    Chen, Ying
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 421 - 435
  • [6] Joint task offloading and UAVs deployment for UAV-assisted mobile edge computing
    Shen, Bo
    Gu, Qi
    Yang, Gang
    COMPUTER NETWORKS, 2023, 234
  • [7] An UAV-assisted mobile edge computing offloading strategy for minimizing energy consumption
    Tang, Qiang
    Liu, Lixin
    Jin, Caiyan
    Wang, Jin
    Liao, Zhuofan
    Luo, Yuansheng
    COMPUTER NETWORKS, 2022, 207
  • [8] Task Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Zhang, Wanjun
    Wang, Aimin
    He, Long
    Sun, Zemin
    Li, Jiahui
    Sun, Geng
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT VI, 2024, 14492 : 382 - 397
  • [9] UAV-Assisted Task Offloading in Vehicular Edge Computing Networks
    Dai, Xingxia
    Xiao, Zhu
    Jiang, Hongbo
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 2520 - 2534
  • [10] Task Offloading and Energy Optimization in Hybrid UAV-Assisted Mobile Edge Computing Systems
    Gao, Ang
    Zhang, Shuai
    Zhang, Qian
    Hu, Yansu
    Liu, Shuhua
    Liang, Wei
    Ng, Soon Xin
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 12052 - 12066