Estimation of the stress-strength reliability for the exponential-Rayleigh distribution

被引:1
作者
Kotb, M. S. [1 ,2 ]
Al Omari, M. A. [1 ]
机构
[1] Al Baha Univ, Dept Math, Al Baha, Saudi Arabia
[2] Al Azhar Univ, Dept Math, Cairo 11884, Egypt
关键词
Bayesian estimation; Exponential-Rayleigh distribution; Confidence interval; Maximum likelihood estimator; Stress-strength model; LESS-THAN Y); INFERENCE; LIMITS; DELTA;
D O I
10.1016/j.matcom.2024.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this current paper, we consider the problem of estimating the stress-strength parameter Psi = P(X < Y). This is done by using Bayesian and non-Bayesian approaches when X and Y are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of Psi. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.
引用
收藏
页码:263 / 273
页数:11
相关论文
共 31 条
[1]   ANALYSIS FOR LINEAR FAILURE-RATE LIFE TESTING DISTRIBUTION [J].
BAIN, LJ .
TECHNOMETRICS, 1974, 16 (04) :551-559
[2]   AREA ABOVE ORDINAL DOMINANCE GRAPH AND AREA BELOW RECEIVER OPERATING CHARACTERISTIC GRAPH [J].
BAMBER, D .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 1975, 12 (04) :387-415
[3]  
Bernardo JM., 1994, Bayesian Theory, DOI DOI 10.1002/9780470316870
[4]  
BROADBENT S, 1958, ROY STAT SOC C-APP, V7, P86
[5]   PLASMACYTIC MYELOMA - A STUDY OF RELATIONSHIP OF SURVIVAL TO VARIOUS CLINICAL MANIFESTATIONS AND ANOMALOUS PROTEIN TYPE IN 112 PATIENTS [J].
CARBONE, PP ;
KELLERHOUSE, LE ;
GEHAN, EA .
AMERICAN JOURNAL OF MEDICINE, 1967, 42 (06) :937-+
[6]   Monte Carlo estimation of Bayesian credible and HPD intervals [J].
Chen, MH ;
Shao, QM .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (01) :69-92
[7]   Inference of δ = P(X &lt; Y) for Burr XII distributions with record samples [J].
Chiang, Jyun-You ;
Jiang, Nan ;
Tsai, Tzong-Ru ;
Lio, Y. L. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (03) :822-838
[8]   Progressively Type-II censored competing risks data from the linear exponential distribution [J].
Davies, Katherine F. ;
Volterman, William .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (05) :1444-1460
[9]  
Gleeson A.C., 1980, Aust. J. Stat., V22, P197
[10]  
Gupta AK, 2001, J STAT PLAN INFER, V93, P181