Cascaded Frequency-Encoded Multi-Scale Neural Fields for Sparse-View CT Reconstruction

被引:0
|
作者
Wu, Jia [1 ,2 ]
Lin, Jinzhao [1 ]
Pang, Yu [3 ]
Jiang, Xiaoming [4 ]
Li, Xinwei [4 ]
Meng, Hongying [5 ]
Luo, Yamei [6 ]
Yang, Lu [7 ]
Li, Zhangyong [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[2] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Optoelect Engn, Chongqing 400065, Peoples R China
[4] Chongqing Univ Posts & Telecommun, Chongqing Engn Res Ctr Med Elect & Informat Techno, Chongqing 400065, Peoples R China
[5] Brunel Univ London, Dept Elect & Elect Engn, Uxbridge UB8 3PH, England
[6] Southwest Med Univ, Sch Med Informat & Engn, Luzhou 646000, Peoples R China
[7] Southwest Med Univ, Affiliated Hosp, Dept Radiol, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
Image reconstruction; Computed tomography; Estimation; Iterative methods; Optimization; Electronic mail; Refining; Neural networks; Image quality; Telecommunications; image reconstruction; iterative unfolding network; neural fields representation; sparse-view; NETWORK;
D O I
10.1109/TCI.2025.3536078
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Sparse-view computed tomography aims to reduce radiation exposure but often suffers from degraded image quality due to insufficient projection data. Traditional methods struggle to balance data fidelity and detail preservation, particularly in high-frequency regions. In this paper, we propose a Cascaded Frequency-Encoded Multi-Scale Neural Fields (Ca-FMNF) framework. We reformulate the reconstruction task as refining high-frequency residuals upon a high-quality low-frequency foundation. It integrates a pre-trained iterative unfolding network for initial low-frequency estimation with a FMNF to represent high-frequency residuals. The FMNF parameters are optimized by minimizing the discrepancy between the measured projections and those estimated through the imaging forward model, thereby refining the residuals based on the initial estimation. This dual-stage strategy enhances data consistency and preserves fine structures. The extensive experiments on simulated and clinical datasets demonstrate that our method achieves the optimal results in both quantitative metrics and visual quality, effectively reducing artifacts and preserving structural details.
引用
收藏
页码:237 / 250
页数:14
相关论文
共 50 条
  • [11] Performance of sparse-view CT reconstruction with multi-directional gradient operators
    Hsieh, Chia-Jui
    Jin, Shih-Chun
    Chen, Jyh-Cheng
    Kuo, Chih-Wei
    Wang, Ruei-Teng
    Chu, Woei-Chyn
    PLOS ONE, 2019, 14 (01):
  • [12] DEEP BACK PROJECTION FOR SPARSE-VIEW CT RECONSTRUCTION
    Ye, Dong Hye
    Buzzard, Gregery T.
    Ruby, Max
    Bouman, Charles A.
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1 - 5
  • [13] Beam Hardening Correction for Sparse-View CT Reconstruction
    Liu, Wenlei
    Rong, Junyan
    Gao, Peng
    Liao, Qimei
    Lu, HongBing
    MEDICAL IMAGING 2015: IMAGE PROCESSING, 2015, 9413
  • [14] Progressively Prompt-Guided Models for Sparse-View CT Reconstruction
    Li, Jiajun
    Du, Wenchao
    Cui, Huanhuan
    Chen, Hu
    Zhang, Yi
    Yang, Hongyu
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2025, 9 (04) : 447 - 459
  • [15] Sparse-View CT Reconstruction via Robust and Multi-channels Autoencoding Priors
    Zhang, Minghui
    Zhang, Fengqin
    Liu, Qiegen
    Liang, Dong
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 55 - 59
  • [16] REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction
    Zhang, Fengqin
    Zhang, Minghui
    Qin, Binjie
    Zhang, Yi
    Xu, Zichen
    Liang, Dong
    Liu, Qiegen
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2021, 5 (01) : 108 - 119
  • [17] Generalized deep iterative reconstruction for sparse-view CT imaging
    Su, Ting
    Cui, Zhuoxu
    Yang, Jiecheng
    Zhang, Yunxin
    Liu, Jian
    Zhu, Jiongtao
    Gao, Xiang
    Fang, Shibo
    Zheng, Hairong
    Ge, Yongshuai
    Liang, Dong
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (02)
  • [18] Dual-domain sparse-view CT reconstruction with Transformers
    Shi, Changrong
    Xiao, Yongshun
    Chen, Zhiqiang
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 101 : 1 - 7
  • [19] Stage-by-Stage Wavelet Optimization Refinement Diffusion Model for Sparse-View CT Reconstruction
    Xu, Kai
    Lu, Shiyu
    Huang, Bin
    Wu, Weiwen
    Liu, Qiegen
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (10) : 3412 - 3424
  • [20] A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction
    Zhang, Pengcheng
    Li, Kunpeng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226