Stability of Discontinuous Galerkin Methods for Volterra Integral Equations

被引:0
作者
Wen, Jiao [1 ]
Li, Min [2 ,3 ]
Guan, Hongbo [1 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Scinence, Zhengzhou, Peoples R China
[2] China Univ Geosci, Sch Math & Phys, Wuhan, Peoples R China
[3] China Univ Geosci, Ctr Math Sci, Wuhan, Peoples R China
关键词
discontinuous Galerkin methods; stability; test equation; Volterra integral equation; RUNGE-KUTTA METHODS; COLLOCATION METHODS;
D O I
10.1002/mma.10649
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We conduct the stability analysis of discontinuous Galerkin methods applied to Volterra integral equations in this paper. Stability conditions with respect to both the basic and convolution test equations are derived. Our findings indicate that the methods with orders up to 6 exhibit A$$ A $$-stability when applied with the basic test equation, while demonstrating unbounded stability regions when applied to the convolution test equation. Additionally, the results of V0$$ {V}_0 $$-stability for the semidiscretized variants (quadrature discontinuous Galerkin methods) and fully discretized versions (fully discretized discontinuous Galerkin methods) with orders 1 and 2 are presented when solving the convolution test equation. To corroborate these theoretical results, we provide some numerical experiments for validation.
引用
收藏
页码:5972 / 5986
页数:15
相关论文
共 29 条
[1]   STABILITY REGIONS IN NUMERICAL TREATMENT OF VOLTERRA INTEGRAL-EQUATIONS [J].
BAKER, CTH ;
KEECH, MS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (02) :394-417
[2]   STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR VOLTERRA INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
BELLEN, A ;
JACKIEWICZ, Z ;
VERMIGLIO, R ;
ZENNARO, M .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (01) :103-118
[3]  
BELLEN A, 1989, MATH COMPUT, V52, P49, DOI 10.1090/S0025-5718-1989-0971402-3
[4]   THE LINEAR BARYCENTRIC RATIONAL QUADRATURE METHOD FOR VOLTERRA INTEGRAL EQUATIONS [J].
Berrut, J-P ;
Hosseini, S. A. ;
Klein, G. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01) :A105-A123
[5]  
Brunner H., 1980, V 0STABILITY NUMERIC
[6]  
Brunner H., 2004, Collocation methods for volterra integral and related functional differential equations, P15, DOI DOI 10.1017/CBO9780511543234
[7]   Global convergence and local superconvergence of first-kind Volterra integral equation approximations [J].
Brunner, Hermann ;
Davies, Penny J. ;
Duncan, Dugald B. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) :1117-1146
[8]   Discontinuous Galerkin approximations for Volterra integral equations of the first kind [J].
Brunner, Hermann ;
Davies, Penny J. ;
Duncan, Dugald B. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (04) :856-881
[9]   Block boundary value methods for solving Volterra integral and integro-differential equations [J].
Chen, Hao ;
Zhang, Chengjian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (11) :2822-2837
[10]   Two-step almost collocation methods for Volterra integral equations [J].
Conte, D. ;
Jackiewicz, Z. ;
Paternoster, B. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (02) :839-853