Mutation of n-cotorsion pairs in triangulated categories

被引:0
作者
Chang, Huimin [1 ]
Zhou, Panyue [2 ]
机构
[1] Open Univ China, Dept Appl Math, Beijing 100039, Peoples R China
[2] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Mutation; n-cotorsion pair; Triangulated category; CLUSTER; ALGEBRAS;
D O I
10.1016/j.jalgebra.2025.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define the notion of n-cotorsion pairs in triangulated categories, which is a generalization of the classical cotorsion pairs. We prove that any mutation of an n-cotorsion pair is again an n-cotorsion pair. When n = 1, this result generalizes the work of Zhou and Zhu for classical cotorsion pairs. As applications, we give a geometric characterization of n-cotorsion pairs in n-cluster categories of type A and give a geometric realization of mutation of n-cotorsion pairs via rotation of certain configurations of n- diagonals. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:653 / 671
页数:19
相关论文
共 23 条
  • [1] A geometric description of m-cluster categories
    Baur, Karin
    Marsh, Robert J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (11) : 5789 - 5803
  • [2] BEILINSON AA, 1982, ASTERISQUE, P7
  • [3] BONDAL AI, 1989, MATH USSR IZV+, V53, P519
  • [4] Cluster structures for 2-Calabi-Yau categories and unipotent groups
    Buan, A. B.
    Iyama, O.
    Reiten, I.
    Scott, J.
    [J]. COMPOSITIO MATHEMATICA, 2009, 145 (04) : 1035 - 1079
  • [5] Tilting theory and cluster combinatorics
    Buan, Aslak Bakke
    Marsh, Bethany Rose
    Reineke, Markus
    Reiten, Idun
    Todorov, Gordana
    [J]. ADVANCES IN MATHEMATICS, 2006, 204 (02) : 572 - 618
  • [6] Buan AB, 2013, T AM MATH SOC, V365, P2845
  • [7] Ptolemy diagrams and cotorsion pairs in m-cluster categories of type A
    Chang, Huimin
    Zhu, Bin
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (12)
  • [8] Cotorsion pairs in cluster categories of type A∞∞
    Chang, Huimin
    Zhou, Yu
    Zhu, Bin
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 156 : 119 - 141
  • [9] A TORSION THEORY FOR ABELIAN CATEGORIES
    DICKSON, SE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 121 (01) : 223 - &
  • [10] Cluster algebras I: Foundations
    Fomin, S
    Zelevinsky, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (02) : 497 - 529