Several refined regularity criteria for the Navier-Stokes equations

被引:0
作者
Wu, Fan [1 ]
机构
[1] Nanchang Inst Technol, Coll Sci, Nanchang 330099, Jiangxi, Peoples R China
关键词
Navier-Stokes equations; regularity criteria; critical spaces; WEAK SOLUTIONS; VORTICITY;
D O I
10.4064/ap231210-11-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish several refined regularity criteria for the Navier-Stokes equations. Specifically, these criteria require only the control of any two of the velocity gradient functions partial derivative 1 u 1 , partial derivative 2 u 2 , and partial derivative 3 u 3 in critical spaces.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 27 条
[1]  
C.-J. O, 2021, NONLINEAR ANAL-REAL, V59
[2]  
C.-J. O, 2023, NONLINEAR ANAL-REAL, V71
[3]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[4]   Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :1-10
[5]  
Dong BQ, 2011, ACTA MATH SCI, V31, P591
[6]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[7]   REGULARITY CRITERION FOR 3D NAVIER-STOKES EQUATIONS IN BESOV SPACES [J].
Fang, Daoyuan ;
Qian, Chenyin .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) :585-603
[8]  
Grafakos L, 2009, GRAD TEXTS MATH, V250, P1, DOI [10.1007/978-0-387-09434-2_6, 10.1007/978-0-387-09432-8_1]
[9]   Regularity criterion for solutions to the Navier Stokes equations in the whole 3D space based on two vorticity components [J].
Guo, Zhengguang ;
Kucera, Petr ;
Skalak, Zdenek .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) :755-766
[10]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248