Unlocking Antimicrobial Peptides: In Silico Proteolysis and Artificial Intelligence-Driven Discovery from Cnidarian Omics

被引:2
作者
Barroso, Ricardo Alexandre [1 ,2 ]
Aguero-Chapin, Guillermin [1 ,2 ]
Sousa, Rita [1 ,2 ]
Marrero-Ponce, Yovani [3 ,4 ]
Antunes, Agostinho [1 ,2 ]
机构
[1] Univ Porto, Interdisciplinary Ctr Marine & Environm Res CIIMAR, Terminal Cruzeiros Porto Leixoes, Ave Gen Norton Matos S-N, P-4450208 Porto, Portugal
[2] Univ Porto, Fac Sci, Dept Biol, FCUP, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[3] Univ Panamer, Fac Ingn, Augusto Rodin 498, Mexico City 03920, Mexico
[4] Univ San Francisco Quito USFQ, Escuela Med, Colegio Ciencias Salud COCSA, Grp Med Mol & Traslac MeM&T,Inst Simulac Computac, Edificio Especial Med,Diego Robles & Via Interocea, Quito 170157, Pichincha, Ecuador
关键词
Cnidaria; antimicrobial; omics; artificial intelligence; complex networks; GREEN SEA-URCHIN; HEMOCYTES; TACHYPLESIN; GENERATION; PREDICTION; DIVERSITY;
D O I
10.3390/molecules30030550
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Overcoming the growing challenge of antimicrobial resistance (AMR), which affects millions of people worldwide, has driven attention for the exploration of marine-derived antimicrobial peptides (AMPs) for innovative solutions. Cnidarians, such as corals, sea anemones, and jellyfish, are a promising valuable resource of these bioactive peptides due to their robust innate immune systems yet are still poorly explored. Hence, we employed an in silico proteolysis strategy to search for novel AMPs from omics data of 111 Cnidaria species. Millions of peptides were retrieved and screened using shallow- and deep-learning models, prioritizing AMPs with a reduced toxicity and with a structural distinctiveness from characterized AMPs. After complex network analysis, a final dataset of 3130 Cnidaria singular non-haemolytic and non-toxic AMPs were identified. Such unique AMPs were mined for their putative antibacterial activity, revealing 20 favourable candidates for in vitro testing against important ESKAPEE pathogens, offering potential new avenues for antibiotic development.
引用
收藏
页数:28
相关论文
共 92 条
[1]   AntiCP 2.0: an updated model for predicting anticancer peptides [J].
Agrawal, Piyush ;
Bhagat, Dhruv ;
Mahalwal, Manish ;
Sharma, Neelam ;
Raghava, Gajendra P. S. .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
[2]   Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials' Discovery [J].
Agueero-Chapin, Guillermin ;
Antunes, Agostinho ;
Mora, Jose R. ;
Perez, Noel ;
Contreras-Torres, Ernesto ;
Valdes-Martini, Jose R. ;
Martinez-Rios, Felix ;
Zambrano, Cesar H. ;
Marrero-Ponce, Yovani .
ANTIBIOTICS-BASEL, 2023, 12 (04)
[3]   Graph Theory-Based Sequence Descriptors as Remote Homology Predictors [J].
Agueero-Chapin, Guillermin ;
Galpert, Deborah ;
Molina-Ruiz, Reinaldo ;
Ancede-Gallardo, Evys ;
Perez-Machado, Gisselle ;
De la Riva, Gustavo A. ;
Antunes, Agostinho .
BIOMOLECULES, 2020, 10 (01)
[4]   Unveiling Encrypted Antimicrobial Peptides from Cephalopods' Salivary Glands: A Proteolysis-Driven Virtual Approach [J].
Aguero-Chapin, Guillermin ;
Dominguez-Perez, Dany ;
Marrero-Ponce, Yovani ;
Castillo-Mendieta, Kevin ;
Antunes, Agostinho .
ACS OMEGA, 2024, 9 (43) :43353-43367
[5]   Emerging Computational Approaches for Antimicrobial Peptide Discovery [J].
Aguero-Chapin, Guillermin ;
Galpert-Canizares, Deborah ;
Dominguez-Perez, Dany ;
Marrero-Ponce, Yovani ;
Perez-Machado, Gisselle ;
Teijeira, Marta ;
Antunes, Agostinho .
ANTIBIOTICS-BASEL, 2022, 11 (07)
[6]   StarPep Toolbox: an open-source software to assist chemical space analysis of bioactive peptides and their functions using complex networks [J].
Aguilera-Mendoza, Longendri ;
Ayala-Ruano, Sebastian ;
Martinez-Rios, Felix ;
Chavez, Edgar ;
Garcia-Jacas, Cesar R. ;
Brizuela, Carlos A. ;
Marrero-Ponce, Yovani .
BIOINFORMATICS, 2023, 39 (08)
[7]   Automatic construction of molecular similarity networks for visual graph mining in chemical space of bioactive peptides: an unsupervised learning approach [J].
Aguilera-Mendoza, Longendri ;
Marrero-Ponce, Yovani ;
Garcia-Jacas, Cesar R. ;
Chavez, Edgar ;
Beltran, Jesus A. ;
Guillen-Ramirez, Hugo A. ;
Brizuela, Carlos A. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   Graph-based data integration from bioactive peptide databases of pharmaceutical interest: toward an organized collection enabling visual network analysis [J].
Aguilera-Mendoza, Longendri ;
Marrero-Ponce, Yovani ;
Beltran, Jesus A. ;
Ibarra, Roberto Tellez ;
Guillen-Ramirez, Hugo A. ;
Brizuela, Carlos A. .
BIOINFORMATICS, 2019, 35 (22) :4739-4747
[9]   Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences [J].
Aguilera-Mendoza, Longendri ;
Marrero-Ponce, Yovani ;
Tellez-Ibarra, Roberto ;
Llorente-Quesada, Monica T. ;
Salgado, Jesus ;
Barigye, Stephen J. ;
Liu, Jun .
BIOINFORMATICS, 2015, 31 (15) :2553-2559
[10]   BACTERIOPLANKTON GROWTH IN SEAWATER .1. GROWTH-KINETICS AND CELLULAR CHARACTERISTICS IN SEAWATER CULTURES [J].
AMMERMAN, JW ;
FUHRMAN, JA ;
HAGSTROM, A ;
AZAM, F .
MARINE ECOLOGY PROGRESS SERIES, 1984, 18 (1-2) :31-39