Federated Erasable-Itemset Mining with Quasi-Erasable Itemsets

被引:0
作者
Hong, Tzung-Pei [1 ,2 ]
Kuo, Meng-Jui [2 ]
Chen, Chun-Hao [3 ]
Li, Katherine Shu-Min [2 ]
机构
[1] Natl Univ Kaohsiung, Dept Comp Sci & Informat Engn, Kaohsiung, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Comp Sci & Engn, Kaohsiung, Taiwan
[3] Natl Kaohsiung Univ Sci & Technol, Dept Comp Sci & Informat Engn, Kaohsiung, Taiwan
来源
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024 | 2024年 / 14795卷
关键词
Federated Mining; Erasable-itemset Mining; Data Mining; Quasi-erasable Itemset;
D O I
10.1007/978-981-97-4982-9_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Erasable-itemset mining plays a crucial role in the research field of manufacturing, especially in helping identify materials with lower profits in product datasets, providing important bases for managers to make wiser decisions. In today's information age, how to share data within a secure framework has become a significant issue. To address this challenge, this paper combines the concepts of federated learning and data mining, particularly in erasable-itemset mining, to propose a federated mining framework. The unique aspect of this framework is that it can effectively mine erasable itemsets from multiple dispersed datasets without the need for direct data sharing. This not only enhances processing efficiency but also protects the privacy of data owners. Our proposed algorithm covers two main steps: client-side mining and server-side data aggregation. Experiments show that our method, while ensuring data security, successfully obtains partial mining results, proving its practicality and effectiveness.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 13 条
[1]   An effective approach for maintenance of pre-large-based frequent-itemset lattice in incremental mining [J].
Bay Vo ;
Tuong Le ;
Hong, Tzung-Pei ;
Bac Le .
APPLIED INTELLIGENCE, 2014, 41 (03) :759-775
[2]   Data Dissemination for Industry 4.0 Applications in Internet of Vehicles Based on Short-term Traffic Prediction [J].
Chen, Chen ;
Liu, Lei ;
Wan, Shaohua ;
Hui, Xiaozhe ;
Pei, Qingqi .
ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2022, 22 (01)
[3]   Privacy-preserving federated mining of frequent itemsets [J].
Chen, Yao ;
Gan, Wensheng ;
Wu, Yongdong ;
Yu, Philip S. .
INFORMATION SCIENCES, 2023, 625 :504-520
[4]   Fast mining erasable itemsets using NC_sets [J].
Deng, Zhi-Hong ;
Xu, Xiao-Ran .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (04) :4453-4463
[5]   MINING ERASABLE ITEMSETS [J].
Deng, Zhi-Hong ;
Fang, Guo-Dong ;
Wang, Zhong-Hui ;
Xu, Xiao-Ran .
PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, :67-73
[6]   Mining Top-Rank-k Erasable Itemsets by PID_lists [J].
Deng, Zhihong .
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2013, 28 (04) :366-379
[7]  
Hong T-P., 2001, Intell. Data Anal, V5, P111, DOI [10.3233/IDA-2001-5203, DOI 10.3233/IDA-2001-5203]
[8]  
Hong TP, 2017, IEEE INT CONF BIG DA, P1816, DOI 10.1109/BigData.2017.8258125
[9]  
Hong TP, 2017, 2017 IEEE INTERNATIONAL CONFERENCE ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA), P286, DOI 10.1109/INISTA.2017.8001172
[10]   Federated Learning: Challenges, Methods, and Future Directions [J].
Li, Tian ;
Sahu, Anit Kumar ;
Talwalkar, Ameet ;
Smith, Virginia .
IEEE SIGNAL PROCESSING MAGAZINE, 2020, 37 (03) :50-60