A THEOREM ON ALMOST HERMITIAN MANIFOLDS

被引:0
|
作者
Kim, Jaeman [1 ]
机构
[1] Kangwon Natl Univ, Dept Math Educ, Chunchon 24341, South Korea
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2024年 / 39卷 / 04期
关键词
Almost Hermitian manifold; Bochner type formula; Ricci tensor; & lowast; -scalar curvature; harmonic almost Hermitian structure; Kahler; EINSTEIN;
D O I
10.4134/CKMS.c230350
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give some sufficient conditions for an almost Hermitian manifold to be Ka<spacing diaeresis>hler.
引用
收藏
页码:991 / 995
页数:5
相关论文
共 50 条
  • [1] ON THE F SCHUR THEOREM FOR ALMOST HERMITIAN-MANIFOLDS
    KASSABOV, OT
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1982, 35 (07): : 905 - 907
  • [2] Three circle theorem on almost Hermitian manifolds and applications
    Yu, Chengjie
    Zhang, Chuangyuan
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [3] Three circle theorem on almost Hermitian manifolds and applications
    Chengjie Yu
    Chuangyuan Zhang
    Calculus of Variations and Partial Differential Equations, 2022, 61
  • [4] Local Riemann-Roch theorem for almost Hermitian manifolds
    Hongyu Wang
    Peng Zhu
    Bulletin of the Brazilian Mathematical Society, New Series, 2010, 41 : 583 - 605
  • [5] Local Riemann-Roch theorem for almost Hermitian manifolds
    Wang, Hongyu
    Zhu, Peng
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2010, 41 (04): : 583 - 605
  • [6] NOTES ON ALMOST HERMITIAN MANIFOLDS
    SAWKI, S
    YAMAGATA, M
    TENSOR, 1972, 26 : 221 - 226
  • [7] Hermitian pluriharmonic maps between almost Hermitian manifolds
    Zhao, Guangwen
    JOURNAL OF GEOMETRY AND PHYSICS, 2025, 209
  • [8] Almost Quaternion-Hermitian Manifolds
    Francisco Martín Cabrera
    Annals of Global Analysis and Geometry, 2004, 25 : 277 - 301
  • [9] On π 2 almost geodesic mappings of almost Hermitian manifolds
    Emel'yanov, A. V.
    Kirichenko, V. F.
    MATHEMATICAL NOTES, 2011, 90 (3-4) : 498 - 505
  • [10] The Dirichlet Problem on Almost Hermitian Manifolds
    Chang Li
    Tao Zheng
    The Journal of Geometric Analysis, 2021, 31 : 6452 - 6480