Engineering properties and sustainability of alkali-activated fly ash-slag mortar containing carbon-negative aggregates

被引:0
|
作者
Wang, Yansong [1 ]
Hu, Yukun [1 ]
Mangabhai, Raman [1 ]
Zhang, Mingzhong [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
关键词
Alkali-activated materials; Recycled aggregate; Engineering properties; Sustainability; CO2 utilisation and storage; RECYCLED CONCRETE; MECHANICAL-PROPERTIES; COMPRESSIVE STRENGTH; EMBODIED ENERGY; WASTE; MICROSTRUCTURE; REPLACEMENT; IMPACT; FRESH;
D O I
10.1016/j.conbuildmat.2025.140668
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In recent years, an increasing number of attempts have been made on the utilisation of carbon-negative aggregates (CNA) produced from calcium/magnesium-rich solid wastes through carbon mineralisation for lowcarbon concrete production. This paper presents an experimental study on the effect of CNA as an alternative to river sand on the engineering properties of alkali-activated fly ash-slag (AAFS) mortar, including flowability, setting time, density, ultrasonic pulse velocity, drying shrinkage, compressive strength and splitting tensile strength. The studied influencing factors include CNA replacement level for river sand (0 %, 25 %, 50 %, 75 % and 100 %) and moisture condition of CNA (air-dry (AD) and saturated-surface-dry (SSD)). The experimental results indicate that replacing sand with CNA in AAFS mortar enhances the flowability and extends setting time when CNA at SSD, but both properties decline when CNA at AD. As the CNA content increases, the density and drying shrinkage of AAFS mortar drop, regardless of moisture conditions. For AAFS mortar with AD CNA, the 28d compressive strength can reach 42.51 MPa at 50 % CNA replacement but reduces with the higher replacement. AAFS mortar with SSD CNA exhibits a continuous rise in 28-d compressive strength, peaking at 39.79 MPa. The maximum splitting tensile strength for AAFS mortar with AD CNA occurs at 50 % CNA replacement, while the splitting tensile strength of AAFS mortar with SSD CNA drops continuously with the increasing content of CNA. The sustainability assessment indicates that the incorporation of CNA into AAFS mortar can reduce the carbon footprint and embodied energy by 63.89 % and 18.25 %, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] BONDING BEHAVOR OF REINFORCEMENT IN ALKALI-ACTIVATED SLAG-FLY ASH MORTAR
    Wu, Tsung-Han
    Chang, Ta-Peng
    Shih, Jeng-Ywan
    Yang, Tzong-Ruey
    Hoang-Anh Nguyen
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 169 - 173
  • [22] Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer
    Tu, Wenlin
    Zhu, Yu
    Fang, Guohao
    Wang, Xingang
    Zhang, Mingzhong
    CEMENT AND CONCRETE RESEARCH, 2019, 116 : 179 - 190
  • [23] Physical, hydrolytic, and mechanical stability of alkali-activated fly ash-slag foam concrete
    Raj, Shubham
    Ramamurthy, K.
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [24] Micromechanical analysis of alkali-activated fly ash-slag paste subjected to elevated temperatures
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 153
  • [25] Behaviour of alkali-activated fly ash-slag paste at elevated temperatures: An experimental study
    Tu, Wenlin
    Fang, Guohao
    Dong, Biqin
    Hu, Yukun
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2024, 147
  • [26] Study on the properties of alkali-activated phosphorus slag mortar mixed with granulated blast furnace slag/fly ash
    Zhang, Yannian
    Wu, Qi
    Yang, Daokui
    Wang, Qingjie
    Qu, Zhifu
    Zhong, Yugang
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2024, 60 (04) : 1281 - 1291
  • [27] Properties of alkali-activated fly ash/slag repair mortars
    Ghafoori, N.
    Najimi, M.
    CONCRETE SOLUTIONS: PROCEEDINGS OF CONCRETE SOLUTIONS, 5TH INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, 2014, : 77 - 81
  • [28] Micromechanical analysis of interfacial transition zone in alkali-activated fly ash-slag concrete
    Fang, Guohao
    Wang, Qiang
    Zhang, Mingzhong
    CEMENT & CONCRETE COMPOSITES, 2021, 119 (119):
  • [29] Engineering properties of alkali-activated fly ash concrete
    Fernández-Jiménez, AM
    Palomo, A
    López-Hombrados, C
    ACI MATERIALS JOURNAL, 2006, 103 (02) : 106 - 112
  • [30] Effect of Active MgO on Compensated Drying Shrinkage and Mechanical Properties of Alkali-Activated Fly Ash-Slag Materials
    Ma, Hongqiang
    Li, Shiru
    Lei, Zelong
    Wu, Jialong
    Yuan, Xinhua
    Niu, Xiaoyan
    BUILDINGS, 2025, 15 (02)