Probabilistic Forecasting of Provincial Regional Wind Power Considering Spatio-Temporal Features

被引:0
|
作者
Li, Gang [1 ]
Lin, Chen [1 ]
Li, Yupeng [1 ]
机构
[1] Dalian Univ Technol, Inst Hydropower & Hydroinformat, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
provincial regional wind power; interval forecast; feature images; spatial meteorological distribution; improved quantile regression; PREDICTION; NETWORK;
D O I
10.3390/en18030652
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate prediction of regional wind power generation intervals is an effective support tool for the economic and stable operation of provincial power grid. However, it involves a large amount of high-dimensional meteorological and historical power generation information related to massive wind power stations in a province. In this paper, a lightweight model is developed to directly obtain probabilistic predictions in the form of intervals. Firstly, the input features are formed through a fused image generation method of geographic and meteorological information as well as a power aggregation strategy, which avoids the extensive and tedious data processing process prior to modeling in the traditional approach. Then, in order to effectively consider the spatial meteorological distribution characteristics of regional power stations and the temporal characteristics of historical power, a parallel prediction network architecture of a convolutional neural network (CNN) and long short-term memory (LSTM) is designed. Meanwhile, an efficient channel attention (ECA) mechanism and an improved quantile regression-based loss function are introduced in the training to directly generate prediction intervals. The case study shows that the model proposed in this paper improves the interval prediction performance by at least 12.3% and reduces the deterministic prediction root mean square error (RMSE) by at least 19.4% relative to the benchmark model.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A Study on Short-Term Wind Power Forecasting Method Based on Wind Speed Spatio-Temporal Calibration and Power Self-adaptive Correction
    Hu, Peiyan
    Yang, Yijiang
    Lian, Ziyu
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 18 (10) : 1607 - 1616
  • [22] Wind Speed Spatio-temporal Forecasting of Wind Farms Based on Universal Kriging and Bayesian Dynamic Model
    Hu Qian
    Chen Hongkun
    Tao Yubo
    Yang Ruixi
    Wang Ling
    Hu Pan
    2014 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2014, : 2897 - 2902
  • [23] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [24] Exploiting sparsity of interconnections in spatio-temporal wind speed forecasting using Wavelet Transform
    Tascikaraoglu, Akin
    Sanandaji, Borhan M.
    Poolla, Kameshwar
    Varaiya, Pravin
    APPLIED ENERGY, 2016, 165 : 735 - 747
  • [25] A probabilistic forecasting approach for air quality spatio-temporal data based on kernel learning method
    Zhan, Haolin
    Zhu, Xin
    Hu, Jianming
    APPLIED SOFT COMPUTING, 2023, 132
  • [26] Short-term Wind Power Probabilistic Forecasting Considering Spatial Correlation
    Wang, Junxiong
    Han, Xueshan
    Jiang, Jiayin
    Li, Wenbo
    Ma, Yanfei
    2017 IEEE CONFERENCE ON ENERGY INTERNET AND ENERGY SYSTEM INTEGRATION (EI2), 2017, : 356 - 361
  • [27] Improved Deep Mixture Density Network for Regional Wind Power Probabilistic Forecasting
    Zhang, Hao
    Liu, Yongqian
    Yan, Jie
    Han, Shuang
    Li, Li
    Long, Quan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2020, 35 (04) : 2549 - 2560
  • [28] Improved Spatio-Temporal Linear Models for Very Short-Term Wind Speed Forecasting
    Filik, Tansu
    ENERGIES, 2016, 9 (03):
  • [29] Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks
    Sun, Shilin
    Liu, Yuekai
    Li, Qi
    Wang, Tianyang
    Chu, Fulei
    ENERGY CONVERSION AND MANAGEMENT, 2023, 283
  • [30] MIESTC: A Multivariable Spatio-Temporal Model for Accurate Short-Term Wind Speed Forecasting
    Li, Shaohan
    Chen, Min
    Yi, Lu
    Lu, Qifeng
    Yang, Hao
    ATMOSPHERE, 2025, 16 (01)