共 39 条
- [11] Hodge V.J., Austin J., A survey of outlier detection methodologies, Artif. Intell. Rev., 22, 2, pp. 85-126, (2004)
- [12] Chandola V., Banerjee A., Kumar V., Anomaly detection: a survey, ACM Comput. Surv., 41, 3, pp. 1-58, (2009)
- [13] Pourbabaee B., Roshtkhari M.J., Khorasani K., Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients, IEEE Trans. Syst. Man. Cybern. Syst., 48, 12, pp. 2095-2104, (2018)
- [14] Lahmiri S., A variational mode decompoisition approach for analysis and forecasting of economic and financial time series, Expert Syst. Appl., 55, pp. 268-273, (2016)
- [15] Soares E., Costa P., Costa B., Leite D., Ensemble of evolving data clouds and fuzzy models for weather time series prediction, Appl. Soft Comput., 64, pp. 445-453, (2018)
- [16] MacEachern L., Vazhbakht G., Configurable FPGA-based outlier detection for time series data, 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 142-145, (2020)
- [17] Chen Y., Zhao Z., Wu H., Chen X., Xiao Q., Yu Y., Fault anomaly detection of synchronous machine winding based on isolation forest and impulse frequency response analysis, Measurement, 188, (2022)
- [18] Wu Y., Meng F., Qin Y., Qian Y., Liu Z., Zhao W., Automated anomaly detection of catenary split pins using unsupervised learning, Autom. Constr., 165, (2024)
- [19] Hoang N.Q., Shim S., Kang S., Lee J.-S., Anomaly detection via improvement of GPR image quality using ensemble restoration networks, Autom. Constr., 165, (2024)
- [20] Rong Z., Pang R., Xu B., Zhou Y., Dam safety monitoring data anomaly recognition using multiple-point model with local outlier factor, Autom. Constr., 159, (2024)