DiffRSS: A Diffusion-Guided Multi-Scale Features Remote Sensing Image Segmentation Method

被引:0
作者
Liu, Honghao [1 ,2 ,3 ]
Yang, Ruixia [1 ,2 ]
Xu, Yue [4 ]
Chen, Zhengchao [4 ]
Zheng, Yuyang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Int Res Ctr Big Data Sustainable Dev Goals, Beijing 100094, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
来源
IEEE ACCESS | 2025年 / 13卷
关键词
Remote sensing; Semantic segmentation; diffusion model;
D O I
10.1109/ACCESS.2024.3522286
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation in remote sensing is a fundamental task with crucial applications across various domains. Traditional approaches primarily utilize bottom-up discriminative methods, where network architectures learn image features to generate segmentation masks. However, the complexity of remote sensing images, characterized by diverse ground object types and intricate scenes, often results in information redundancy and confusion during feature extraction, impacting segmentation accuracy. To address these challenges, we introduce a novel segmentation framework, DiffRSS, based on the denoising model paradigm. This top-down generative approach learns the data distribution of sample labels and uses image features as guiding priors for generating segmentation masks. We conceptualize the semantic segmentation of remote sensing images as a conditional generation task and design a Multiscale Cyclic Denoising Module (MSCDM), which effectively leverages multiscale features of remote sensing images, leading to superior segmentation outcomes. Inspired by diffusion models, our denoising structure, MSCDM, can be reused multiple times during inference, enhancing the quality of segmentation masks. This method allows for more precise capture and utilization of image features, resulting in finer and more accurate segmentation masks. Extensive testing on three public remote sensing datasets the ISPRS Vaihingen, ISPRS Potsdam, and GID Fine Land Cover Classification datasets demonstrates that our method achieves competitive results.
引用
收藏
页码:802 / 816
页数:15
相关论文
共 60 条
[1]  
Amit T, 2022, Arxiv, DOI [arXiv:2112.00390, DOI 10.48550/ARXIV.2112.00390]
[2]   DIFFUSION MODELS FOR REMOTE SENSING IMAGERY SEMANTIC SEGMENTATION [J].
Ayala, C. ;
Sesma, R. ;
Aranda, C. ;
Galar, M. .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :5654-5657
[3]  
Bandara WGC, 2024, Arxiv, DOI [arXiv:2206.11892, DOI 10.48550/ARXIV.2206.11892]
[4]  
Chen L.C., 2018, P EUR C COMP VIS ECC, DOI [DOI 10.1007/978-3-030-01234-2_49, 10.1007/978-3-030-01234-2_49]
[5]   DiffusionDet: Diffusion Model for Object Detection [J].
Chen, Shoufa ;
Sun, Peize ;
Song, Yibing ;
Luo, Ping .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :19773-19786
[6]  
Chen ZN, 2023, Arxiv, DOI arXiv:2308.00303
[7]  
Chen ZX, 2023, Arxiv, DOI arXiv:2305.17932
[8]   HRRNet: Hierarchical Refinement Residual Network for Semantic Segmentation of Remote Sensing Images [J].
Cheng, Shiwei ;
Li, Baozhu ;
Sun, Le ;
Chen, Yuwen .
REMOTE SENSING, 2023, 15 (05)
[9]   Remote Sensing for Monitoring Photovoltaic Solar Plants in Brazil Using Deep Semantic Segmentation [J].
Coelho Vieira da Costa, Marcus Vinicius ;
Ferreira de Carvalho, Osmar Luiz ;
Orlandi, Alex Gois ;
Hirata, Issao ;
de Albuquerque, Anesmar Olino ;
Vilarinho e Silva, Felipe ;
Guimaraes, Renato Fontes ;
Gomes, Roberto Arnaldo Trancoso ;
de Carvalho Junior, Osmar Abilio .
ENERGIES, 2021, 14 (10)
[10]  
Dhariwal P, 2021, ADV NEUR IN, V34