Strong global convergence properties of algorithms for nonlinear symmetric cone programming

被引:1
|
作者
Andreani, R. [1 ]
Haeser, G. [2 ]
Ramos, A. [3 ]
Santos, D. O. [4 ]
Secchin, L. D. [5 ]
Serranoni, A. [6 ]
机构
[1] Univ Estadual Campinas, Dept Appl Math, Campinas, SP, Brazil
[2] Univ Sao Paulo, Dept Appl Math, Sao Paulo, SP, Brazil
[3] Univ Tarapaca, Dept Matemat, Arica, Chile
[4] Univ Fed Sao Paulo, Paulista Sch Polit Econ & Business, Osasco, SP, Brazil
[5] Univ Fed Espirito Santo, Dept Appl Math, Sao Mateus, ES, Brazil
[6] Univ Sao Paulo, Dept Comp Sci, Sao Paulo, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Nonlinear symmetric cone optimization; Sequential optimality conditions; Numerical algorithms; Global convergence; INTERIOR-POINT METHODS; AUGMENTED LAGRANGIAN-METHODS; OPTIMALITY CONDITIONS; CONSTRAINT QUALIFICATIONS; OPTIMIZATION; DIFFERENTIABILITY; SEMIDEFINITE; CONVEXITY;
D O I
10.1007/s10589-024-00642-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Sequential optimality conditions have played a major role in establishing strong global convergence properties of numerical algorithms for many classes of optimization problems. In particular, the way complementarity is handled defines different optimality conditions and is fundamental to achieving a strong condition. Typically, one uses the inner product structure to measure complementarity, which provides a general approach to conic optimization problems, even in the infinite-dimensional case. In this paper we exploit the Jordan algebraic structure of symmetric cones to measure complementarity, resulting in a stronger sequential optimality condition related to the well-known complementary approximate Karush-Kuhn-Tucker conditions in standard nonlinear programming. Our results improve some known results in the setting of semidefinite programming and second-order cone programming in a unified framework. In particular, we obtain global convergence that are stronger than those known for augmented Lagrangian and interior point methods for general symmetric cones.
引用
收藏
页码:397 / 421
页数:25
相关论文
共 50 条
  • [11] Optimality conditions and global convergence for nonlinear semidefinite programming
    Roberto Andreani
    Gabriel Haeser
    Daiana S. Viana
    Mathematical Programming, 2020, 180 : 203 - 235
  • [12] On the convergence of augmented Lagrangian strategies for nonlinear programming
    Andreani, Roberto
    Ramos, Alberto
    Ribeiro, Ademir A.
    Secchin, Leonardo D.
    Velazco, Ariel R.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (02) : 1735 - 1765
  • [13] CONSTRAINT QUALIFICATIONS AND STRONG GLOBAL CONVERGENCE PROPERTIES OF AN AUGMENTED LAGRANGIAN METHOD ON RIEMANNIAN MANIFOLDS
    Andreani, Roberto
    Couto, Kelvin R.
    Ferreira, Orizon P.
    Haeser, Gabriel
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (02) : 1799 - 1825
  • [14] GLOBAL CONVERGENCE OF FILTER METHODS FOR NONLINEAR PROGRAMMING
    Ribeiro, Ademir A.
    Karas, Elizabeth W.
    Gonzaga, Ovis C.
    SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (03) : 1231 - 1249
  • [15] Failure of global convergence for a class of interior point methods for nonlinear programming
    Wächter, A
    Biegler, LT
    MATHEMATICAL PROGRAMMING, 2000, 88 (03) : 565 - 574
  • [16] A Filter Method for Nonlinear Semidefinite Programming with Global Convergence
    Zhi Bin ZHU
    Hua Li ZHU
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (10) : 1810 - 1826
  • [17] Global convergence of slanting filter methods for nonlinear programming
    Karas, Elizabeth W.
    Oening, Ana P.
    Ribeiro, Ademir A.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 486 - 500
  • [18] A filter method for nonlinear semidefinite programming with global convergence
    Zhi Bin Zhu
    Hua Li Zhu
    Acta Mathematica Sinica, English Series, 2014, 30 : 1810 - 1826
  • [19] A Filter Method for Nonlinear Semidefinite Programming with Global Convergence
    Zhu, Zhi Bin
    Zhu, Hua Li
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (10) : 1810 - 1826
  • [20] On the Convergence of Central Path and Generalized Proximal Point Method for Symmetric Cone Linear Programming
    Yu, Zhensheng
    Zhu, Yanyan
    Cao, Qianqian
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2013, 7 (06): : 2327 - 2333