Spatio-Temporal 3D Reconstruction from Frame Sequences and Feature Points

被引:0
作者
Federico, Giulio [1 ]
Carrara, Fabio [1 ]
Amato, Giuseppe [1 ]
Di Benedetto, Marco [1 ]
机构
[1] CNR ISTI, Pisa, Italy
来源
PROCEEDINGS OF THE 2024 ACM INTERNATIONAL CONFERENCE ON INTERACTIVE MEDIA EXPERIENCES WORKSHOPS, IMXW 2024 | 2024年
关键词
Denoising Diffusion Probabilistic Model; Signed Distance Field; 3D Reconstruction; Video Reconstruction; Deep Learning; Machine Learning; Artificial Intelligence;
D O I
10.1145/3672406.3672415
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Reconstructing a large real environment is a fundamental task to promote eXtended Reality adoption in industrial and entertainment fields. However, the short range of depth cameras, the sparsity of LiDAR sensors, and the huge computational cost of Structure-from-Motion pipelines prevent scene replication in near real time. To overcome these limitations, we introduce a spatio-temporal diffusion neural architecture, a generative AI technique that fuses temporal information (i.e., a short temporally-ordered list of color photographs, like sparse frames of a video stream) with an approximate spatial resemblance of the explored environment. Our aim is to modify an existing 3D diffusion neural model to produce a Signed Distance Field volume from which a 3D mesh representation can be extracted. Our results show that the hallucination approach of diffusion models is an effective methodology where a fast reconstruction is a crucial target.
引用
收藏
页码:52 / 64
页数:13
相关论文
共 22 条
[1]  
Abraham N., 2018, arXiv, DOI DOI 10.48550/ARXIV.1810.07842
[2]   3D Shape Generation via Variational Autoencoder with Signed Distance Function Relativistic Average Generative Adversarial Network [J].
Ajayi, Ebenezer Akinyemi ;
Lim, Kian Ming ;
Chong, Siew-Chin ;
Lee, Chin Poo .
APPLIED SCIENCES-BASEL, 2023, 13 (10)
[3]   Diffusion-SDF: Conditional Generative Modeling of Signed Distance Functions [J].
Chou, Gene ;
Bahat, Yuval ;
Heide, Felix .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, :2262-2272
[4]  
Dosovitskiy A, 2017, PR MACH LEARN RES, V78
[5]  
Girdhar R, 2016, CORR ABS160308637
[6]  
Ho JAT, 2020, Arxiv, DOI [arXiv:2006.11239, 10.48550/arxiv.2006.11239.arXiv, DOI 10.48550/ARXIV.2006.11239]
[7]  
Ho J, 2022, J MACH LEARN RES, V23, P1
[8]   Analyzing and Improving the Image Quality of StyleGAN [J].
Karras, Tero ;
Laine, Samuli ;
Aittala, Miika ;
Hellsten, Janne ;
Lehtinen, Jaakko ;
Aila, Timo .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8107-8116
[9]  
Laine Samuli, 2010, Proc. ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, P55, DOI [10.1145/1730804.1730814, DOI 10.1145/1730804.1730814]
[10]  
Luo Shitong, 2021, arXiv