The poset of Specht ideals for hyperoctahedral groups

被引:0
作者
Debus, Sebastian [1 ]
Moustrou, Philippe [2 ]
Riener, Cordian [3 ]
Verdure, Hugues [3 ]
机构
[1] Tech Univ Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Univ Toulouse, Inst Math Toulouse, UMR 5219, UT2J, F-31058 Toulouse, France
[3] UiT The Arctic Univ Norway, Dept Math & Stat, N-9037 Tromso, Norway
来源
ALGEBRAIC COMBINATORICS | 2023年 / 6卷 / 06期
基金
欧盟地平线“2020”;
关键词
bipartitions; Specht polynomials; hyperoctahedral group; invariant ideals; HECKE ALGEBRAS; REPRESENTATIONS;
D O I
10.5802/alco.316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Specht polynomials classically realize the irreducible representations of the symmetric group. The ideals defined by these polynomials provide a strong connection with the combinatorics of Young tableaux and have been intensively studied by several authors. We initiate similar investigations for the ideals defined by the Specht polynomials associated to the hyperoctahedral group Bn. We introduce a bidominance order on bipartitions which describes the poset of inclusions of these ideals and study algebraic consequences on general Bn-invariant ideals and varieties, which can lead to computational simplifications.
引用
收藏
页码:1593 / 1619
页数:28
相关论文
共 35 条
  • [1] Hessenberg varieties and hyperplane arrangements
    Abe, Takuro
    Horiguchi, Tatsuya
    Masuda, Mikiya
    Murai, Satoshi
    Sato, Takashi
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 241 - 286
  • [2] Aguiar Marcelo, 2017, Topics in hyperplane arrangements, V226
  • [3] THE REPRESENTATIONS OF THE WEYL GROUPS OF TYPE-BN
    ALAAMILY, E
    MORRIS, AO
    PEEL, MH
    [J]. JOURNAL OF ALGEBRA, 1981, 68 (02) : 298 - 305
  • [4] [Anonymous], 1937, Math. Z., V42, P774
  • [5] Ariki S, 2001, OSAKA J MATH, V38, P827
  • [6] Vandermonde Varieties, Mirrored Spaces, and the Cohomology of Symmetric Semi-algebraic Sets
    Basu, Saugata
    Riener, Cordian
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2022, 22 (05) : 1395 - 1462
  • [7] Symmetric Non-Negative Forms and Sums of Squares
    Blekherman, Grigoriy
    Riener, Cordian
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 65 (03) : 764 - 799
  • [8] Brylawski T., 1973, Discrete Mathematics, V6, P201, DOI 10.1016/0012-365X(73)90094-0
  • [9] INDUCED CYCLE STRUCTURES OF THE HYPEROCTAHEDRAL GROUP
    CHEN, WYC
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (03) : 353 - 362
  • [10] DERANGEMENTS ON THE N-CUBE
    CHEN, WYC
    STANLEY, RP
    [J]. DISCRETE MATHEMATICS, 1993, 115 (1-3) : 65 - 75