Dissolution of Lime in High-Basicity CaO-SiO2-FetO-MgO Slag Under Dynamic Conditions

被引:0
作者
Muvunyi, Rodrigue Armel [1 ]
Hou, Yanglai [2 ]
Li, Shannan [1 ]
Jia, Cao [1 ]
Xu, Qi [1 ]
Li, Jianli [1 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
[3] Wuhan Univ Sci & Technol, Hubei Prov Key Lab New Proc Ironmaking & Steelmaki, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
converter slag; interfacial layer; lime; mass transfer; IN-SITU OBSERVATION; STEELMAKING SLAGS; CONVERTER SLAG; MOLTEN SLAG; BOF SLAG; BEHAVIOR; STEEL; PARTICLES; MECHANISM; EVOLUTION;
D O I
10.1002/srin.202400877
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
This study examines the dissolution behavior of solid lime in high-basicity CaO-SiO2-FetO-MgO slags at 1600 degrees C, using a stirring rod at a rotation speed of 110 rpm for 70 s after the lime being dropped in the molten slag. The investigation focuses on slag basicity ranging from 2.1 to 3.3, with constant MgO (7 wt%) and FeO (20 wt%). The results show that at a basicity of 2.1, layers of C2S and C3S + CaO-FeO are formed at the slag-lime interface. A dense C2S layer significantly impedes lime dissolution, resulting in the lowest dissolution rate, with chemical reaction assumed as rate-controlling mechanism. As the basicity increases to 2.4, the precipitation of MgO occurs, facilitating the formation of a discontinuous C3S layer interspersed with CaO-FeO, which promotes material flow and results in the highest dissolution rate. However, at higher basicity (2.7-3.3), a discontinuous C3S + CaO-FeO layer reappears, accompanied by excessive MgO precipitation at the interface, hindering dissolution. The increasing layer thickness and MgO concentration, combined with decreasing solubility of MgO at higher basicity, slow the dissolution process. Diffusion through a boundary layer is assumed as the rate-controlling mechanism.
引用
收藏
页数:13
相关论文
共 48 条
  • [1] Allibert M., 2012, Slag Atlas
  • [2] Dissolution of dense lime in molten slags under static conditions
    Amini, Shahriar
    Brungs, Michael
    Ostrovski, Oleg
    [J]. ISIJ INTERNATIONAL, 2007, 47 (01) : 32 - 37
  • [3] Cavaliere P., 2016, Ironmaking and Steelmaking Processes: Greenhouse Emissions, Control, and Reduction, DOI [10.1007/978-3-319-39529-6, DOI 10.1007/978-3-319-39529-6]
  • [4] Crystallization behavior of melted BOF slag during non -isothermal constant cooling process
    Choi, Min-woo
    Jung, Sung-Mo
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 2017, 468 : 105 - 112
  • [5] Dissolution behaviour of limestone in converter slag: evolution of microstructure and reaction interface
    Deng, Haohua
    Wang, Nan
    Chen, Min
    Zhang, Guangzong
    [J]. IRONMAKING & STEELMAKING, 2020, 47 (04) : 417 - 423
  • [6] Dissolution mechanism of dolomite in converter slag at 1873 K
    Deng, T. F.
    Du, S. C.
    [J]. IRONMAKING & STEELMAKING, 2014, 41 (01) : 75 - 80
  • [7] Study of Lime Dissolution Under Forced Convection
    Deng, Tengfei
    Du Sichen
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2012, 43 (03): : 578 - 586
  • [8] Kinetics of Flux Dissolution in Oxygen Steelmaking
    Dogan, Neslihan
    Brooks, Geoffrey A.
    Rhamdhani, Muhammad Akbar
    [J]. ISIJ INTERNATIONAL, 2009, 49 (10) : 1474 - 1482
  • [9] Rate Limitations of Lime Dissolution into Coal Ash Slag
    Elliott, Liza K.
    Lucas, John A.
    Happ, Jim
    Patterson, John
    Hurst, Harry
    Wall, Terry F.
    [J]. ENERGY & FUELS, 2008, 22 (06) : 3626 - 3630
  • [10] In Situ Observation of the Dissolution of SiO2 Particles in CaO-Al2O3-SiO2 Slags and Mathematical Analysis of its Dissolution Pattern
    Feichtinger, Stefan
    Michelic, Susanne K.
    Kang, Youn-Bae
    Bernhard, Christian
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (01) : 316 - 325