Transcriptome and metabolome analyses revealed different salt tolerance pathways in leaves and roots of Rosa rugosa Thunb.

被引:0
|
作者
Li, Ling [1 ]
Zang, Fengqi [1 ]
Wu, Qichao [1 ]
Lu, Yizeng [2 ]
Yu, Shuhan [1 ]
Ma, Yan [1 ]
Zang, Dekui [1 ]
机构
[1] Shandong Agr Univ, Key Lab State Forestry Adm Silviculture Lower Yell, Taishan Forest Ecosyst Res Stn, Coll Forestry, Tai An 271018, Peoples R China
[2] Shandong Prov Ctr Forest & Grass Germplasm Resourc, Jinan 250102, Peoples R China
关键词
Rosa rugosa; Salt stress; Transcriptome; Metabolome; AUXIN BIOSYNTHESIS; ABC TRANSPORTER; DROUGHT-STRESS; TRYPTOPHAN; SALINITY; HOMEOSTASIS; CATALASE; IMPACT; GROWTH; SUGARS;
D O I
10.1016/j.scienta.2025.114064
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Rosa rugosa Thunb., mainly distributed on the coast in China, has strong salt tolerance, making it a good material to study the salt tolerance mechanism of plants. This study showed that under 200 mM NaCl stress, the activities of superoxide dismutase (SOD) and peroxidase (POD), and soluble sugar content, as well as malondialdehyde (MDA) content in R. rugosa roots and leaves first increased and then decreased. The differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) enriched in the leaves were significantly more than those in the roots, and they played a dominant role in the response to salt stress. Combined metabolome and transcriptome analyses showed that starch and sucrose metabolism, tryptophan metabolism and purine metabolism played essential roles dealing with salt stress in root. The flavonoid biosynthesis pathway and glycerophospholipid metabolism pathway were significantly enriched in the leaves, which improved antioxidant ability. In addition, abscisic acid (ABA) accumulated in the leaves and roots and was the most important anti-salt hormone in R. rugosa. The study elucidated the molecular mechanism underlying the response of R. rugosa to salt stress and supplied breeding of salt-tolerant R. rugosa with theoretical support.
引用
收藏
页数:13
相关论文
共 36 条
  • [1] Rat intestinal sucrase inhibition of constituents from the roots of Rosa rugosa Thunb.
    Nguyen Phuong Thao
    Bui Thi Thuy Luyen
    Bui Huu Tai
    Yang, Seo Young
    Jo, Sung Hoo
    Nguyen Xuan Cuong
    Nguyen Hoai Nam
    Kwon, Young In
    Chau Van Minh
    Kim, Young Ho
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2014, 24 (04) : 1192 - 1196
  • [2] Triterpenoid saponins from the roots of Rosa rugosa Thunb. as rat intestinal sucrase inhibitors
    Nguyen Phuong Thao
    Bui Thi Thuy Luyen
    Jo, Sung Hoo
    Tran Manh Hung
    Nguyen Xuan Cuong
    Nguyen Hoai Nam
    Kwon, Young In
    Chau Van Minh
    Kim, Young Ho
    ARCHIVES OF PHARMACAL RESEARCH, 2014, 37 (10) : 1280 - 1285
  • [3] Transcriptome and chemical analyses revealed the mechanism of flower color formation in Rosa rugosa
    Wang, Yiting
    Li, Shaopeng
    Zhu, Ziqi
    Xu, Zongda
    Qi, Shuai
    Xing, Shutang
    Yu, Yunyan
    Wu, Qikui
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Metabolome and transcriptome analyses reveal the colouring mechanism of red honeysuckle (Lonicera japonica Thunb.)
    Zhang, Xiaodong
    Li, Caixia
    Hao, Zhanchao
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2023, 51 (03)
  • [5] Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations
    Cui, Jie
    Li, Junliang
    Dai, Cuihong
    Li, Liping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [6] Metabolome and Transcriptome Analyses Reveal the Differences in the Molecular Mechanisms of Oat Leaves Responding to Salt and Alkali Stress Conditions
    Bai, Jianhui
    Lu, Peina
    Li, Feng
    Li, Lijun
    Yin, Qiang
    AGRONOMY-BASEL, 2023, 13 (06):
  • [7] Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection
    Lei, Gang
    Zhou, Kun-Hua
    Chen, Xue-Jun
    Huang, Yue-Qin
    Yuan, Xin-Jie
    Li, Ge-Ge
    Xie, Yuan-Yuan
    Fang, Rong
    BMC GENOMICS, 2023, 24 (01)
  • [8] Transcriptome and metabolome analyses revealed the response mechanism of pepper roots to Phytophthora capsici infection
    Gang Lei
    Kun-Hua Zhou
    Xue-Jun Chen
    Yue-Qin Huang
    Xin-Jie Yuan
    Ge-Ge Li
    Yuan-Yuan Xie
    Rong Fang
    BMC Genomics, 24
  • [9] Integrated Metabolome and Transcriptome Analyses Reveal the Mechanisms Regulating Flavonoid Biosynthesis in Blueberry Leaves under Salt Stress
    Ma, Bin
    Song, Yan
    Feng, Xinghua
    Guo, Pu
    Zhou, Lianxia
    Jia, Sijin
    Guo, Qingxun
    Zhang, Chunyu
    HORTICULTURAE, 2024, 10 (10)
  • [10] Transcriptome and Metabolome Analyses Reveal Complex Molecular Mechanisms Involved in the Salt Tolerance of Rice Induced by Exogenous Allantoin
    Wang, Juan
    Li, Yingbo
    Wang, Yinxiao
    Du, Fengping
    Zhang, Yue
    Yin, Ming
    Zhao, Xiuqin
    Xu, Jianlong
    Yang, Yongqing
    Wang, Wensheng
    Fu, Binying
    ANTIOXIDANTS, 2022, 11 (10)