High-efficiency water dissociation via natural polymer bipolar membranes with alginate/polydopamine-coated halloysite nanotubes and phosphotungstic acid

被引:0
作者
Wang, Xiaoqing [1 ]
Xu, Jinyun [1 ]
Shang, Shijie [1 ]
Li, Ming [1 ]
He, Sijia [1 ]
Wang, Xiaoyan [1 ]
Yang, Bingyu [1 ]
He, Yirang [2 ]
Ru, Xiaolu [1 ]
Ji, Yanyan [1 ]
Zhu, Wenju [1 ]
Zheng, Chunming [1 ]
Sun, Xiaohong [2 ]
机构
[1] Tiangong Univ, Sch Chem Engn & Technol, Tianjin Key Lab Green Chem Technol & Proc Engn, State Key Lab Separat Membrane & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tianjin Univ, Sch Mat Sci & Engn, Key Lab Adv Ceram & Machining Technol, Minist Educ, Tianjin 300072, Peoples R China
关键词
Halloysite nanotubes; Phosphotungstic acid; Cation exchange membrane; Bipolar membrane; Electrodialysis; Hydrolytic dissociation; COMPOSITE MEMBRANE; SODIUM ALGINATE; BLEND MEMBRANES; GRAPHENE OXIDE; PERFORMANCE; DOPAMINE; SELECTIVITY; SEPARATION; CHITOSAN;
D O I
10.1016/j.memsci.2025.124008
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Bipolar membranes (BPMs), composed of anion exchange membrane (AEM) and cation exchange membrane (CEM), hold promise for energy and environmental applications due to their ability to dissociate water into H+ and OH- under reverse bias. However, their practical voltage requirements often exceed theoretical potentials, necessitating efficiency optimization. This study introduces an innovative BPM design integrating alginate (SA)based CEM with chitosan AEM, enhanced by polydopamine-coated halloysite nanotubes (DHNTs) loaded with phosphotungstic acid (HPW). The tubular structure of the DHNTs, modified via dopamine polymerization, improved mechanical stability and proton conductivity, while HPW coating (optimized at 10 wt %) facilitated acid-base interactions, reducing proton hopping distances. Comprehensive characterization (SEM, FTIR, XPS, TGA) confirmed successful HPW coating and structural modification. The optimized BPM exhibited enhanced tensile strength than unmodified BPM with proton conductivity of 36.56 mS/cm and low water dissociation overpotential of 1.188 V at 70 mA/cm2. Electrodialysis tests revealed reduced interfacial resistance (IR drop) and increased stability over 48 h, attributed to HPW's catalytic role in accelerating ion transport and minimizing energy loss. The synergy between DHNTs and HPW significantly improved hydrophilicity, mechanical robustness, and energy efficiency, demonstrating the potential of this design for sustainable electrochemical systems. These findings provide critical insights into advanced BPM development for scalable energy and environmental technologies.
引用
收藏
页数:12
相关论文
共 58 条
[1]   Exploration of nanocomposite membranes composed of phosphotungstic acid in sodium alginate for separation of aqueous-organic mixtures by pervaporation [J].
Adoor, Susheelkumar G. ;
Rajineekanth, V. ;
Nadagouda, Mallikarjuna N. ;
Rao, K. Chowdoji ;
Dionysiou, Dionysios D. ;
Aminabhavi, Tejraj M. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2013, 113 :64-74
[2]   Synthesis, characterization and optimization of sulfonated poly-ether-ether-ketone (sPEEK)/functionalized carbon nanotubes (c-CNTs) nanocomposite membranes for fuel cell application [J].
Ali, Mawlood Maajal ;
Basem, Ali ;
Azam, Ameer ;
Rizvi, S. J. A. ;
Rashid, Farhan Lafta .
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (02)
[3]   Surface Modification of Halloysite Nanotubes with Dopamine for Enzyme Immobilization [J].
Chao, Cong ;
Liu, Jindun ;
Wang, Jingtao ;
Zhang, Yanwu ;
Zhang, Bing ;
Zhang, Yatao ;
Xiang, Xu ;
Chen, Rongfeng .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (21) :10559-10564
[4]   The effect of grafted alkyl side chains on the properties of poly(terphenyl piperidinium) based high temperature proton exchange membranes [J].
Che, Xuefu ;
Wang, Lele ;
Wang, Ting ;
Dong, Jianhao ;
Yang, Jingshuai .
INDUSTRIAL CHEMISTRY & MATERIALS, 2023, 1 (04) :516-525
[5]   Poly(Alkyl-Terphenyl Piperidinium) Ionomers and Membranes with an Outstanding Alkaline-Membrane Fuel-Cell Performance of 2.58 W cm-2 [J].
Chen, Nanjun ;
Hu, Chuan ;
Wang, Ho Hyun ;
Kim, Sun Pyo ;
Kim, Hae Min ;
Lee, Won Hee ;
Bae, Joon Yong ;
Park, Jong Hyeong ;
Lee, Young Moo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (14) :7710-7718
[6]   Preparation and characterization of mSA/mCS bipolar membranes modified by CuTsPc and CuTAPc [J].
Chen, Ri-Yao ;
Chen, Zhen ;
Zheng, Xi ;
Chen, Xiao ;
Wu, Shao-Ying .
JOURNAL OF MEMBRANE SCIENCE, 2010, 355 (1-2) :1-6
[7]   High-Performance Bipolar Membrane Development for Improved Water Dissociation [J].
Chen, Yingying ;
Wrubel, Jacob A. ;
Klein, W. Ellis ;
Kabir, Sadia ;
Smith, Wilson A. ;
Neyerlin, K. C. ;
Deutsch, Todd G. .
ACS APPLIED POLYMER MATERIALS, 2020, 2 (11) :4559-4569
[8]   Performance enhancement of bipolar membranes modified by Fe complex catalyst [J].
Cheng, Guishi ;
Zhao, Ying ;
Li, Wenjun ;
Zhang, Jilong ;
Wang, Xiaoqiang ;
Dong, Changqing .
JOURNAL OF MEMBRANE SCIENCE, 2019, 589
[9]   Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells [J].
Cui, Zhiming ;
Liu, Changpeng ;
Lu, Tianhong ;
Xing, Wei .
JOURNAL OF POWER SOURCES, 2007, 167 (01) :94-99
[10]   Development of sulfonated poly(ether ether ketone)/polyethersulfone -crosslinked quaternary ammonium poly(ether ether ketone) bipolar membrane electrolyte via hot-press approach for hydrogen/oxygen fuel cell [J].
Daud, Syarifah N. S. S. ;
Norddin, Muhammad N. A. M. ;
Jaafar, Juhana ;
Sudirman, Rubita .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (06) :9210-9228