Biclustering a dataset using photonic quantum computing

被引:0
作者
Borle, Ajinkya [1 ]
Bhave, Ameya [1 ]
机构
[1] Univ Maryland Baltimore Cty, CSEE Dept, Baltimore, MD 21250 USA
来源
FRONTIERS IN COMPUTER SCIENCE | 2024年 / 6卷
关键词
biclustering; quantum computing; boson sampling; Gaussian boson sampling; block clustering; co-clustering; two mode clustering; data mining;
D O I
10.3389/fcomp.2024.1441879
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Biclustering is a problem in machine learning and data mining that seeks to group together rows and columns of a dataset according to certain criteria. In this work, we highlight the natural relation that quantum computing models like boson and Gaussian boson sampling (GBS) have to this problem. We first explore the use of boson sampling to identify biclusters based on matrix permanents. We then propose a heuristic that finds clusters in a dataset using Gaussian boson sampling by (i) converting the dataset into a bipartite graph and then (ii) running GBS to find the densest sub-graph(s) within the larger bipartite graph. Our simulations for the above proposed heuristics show promising results for future exploration in this area.
引用
收藏
页数:17
相关论文
共 62 条
[1]  
Aaronson S, 2013, Arxiv, DOI arXiv:1309.7460
[2]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[3]   Using Gaussian Boson Sampling to Find Dense Subgraphs [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. .
PHYSICAL REVIEW LETTERS, 2018, 121 (03)
[4]   Quantum approximate optimization with Gaussian boson sampling [J].
Arrazola, Juan Miguel ;
Bromley, Thomas R. ;
Rebentrost, Patrick .
PHYSICAL REVIEW A, 2018, 98 (01)
[5]   A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data [J].
Ayadi, Wassim ;
Elloumi, Mourad ;
Hao, Jin-Kao .
BIODATA MINING, 2009, 2
[6]   SIMULATED ANNEALING [J].
BERTSIMAS, D ;
TSITSIKLIS, J .
STATISTICAL SCIENCE, 1993, 8 (01) :10-15
[7]  
Bonaldi N., 2023, arXiv, DOI [10.1007/s42484-024-00185-w, DOI 10.1007/S42484-024-00185-W]
[8]   Biclustering with a quantum annealer [J].
Bottarelli, Lorenzo ;
Bicego, Manuele ;
Denitto, Matteo ;
Di Pierro, Alessandra ;
Farinelli, Alessandro ;
Mengoni, Riccardo .
SOFT COMPUTING, 2018, 22 (18) :6247-6260
[9]   Photonic implementation of boson sampling: a review [J].
Brod, Daniel J. ;
Galvao, Ernesto F. ;
Crespi, Andrea ;
Osellame, Roberto ;
Spagnolo, Nicolo ;
Sciarrino, Fabio .
ADVANCED PHOTONICS, 2019, 1 (03)
[10]   Applications of near-term photonic quantum computers: software and algorithms [J].
Bromley, Thomas R. ;
Arrazola, Juan Miguel ;
Jahangiri, Soran ;
Izaac, Josh ;
Quesada, Nicolas ;
Gran, Alain Delgado ;
Schuld, Maria ;
Swinarton, Jeremy ;
Zabaneh, Zeid ;
Killoran, Nathan .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (03)