Evaluation and application of population pharmacokinetic models for optimising linezolid treatment in non-adherence multidrug-resistant tuberculosis patients

被引:0
作者
Li, Rong [1 ]
Sun, Feng [1 ]
Feng, Zhen [1 ]
Zhang, Yilin [1 ]
Lan, Yuanbo [1 ,2 ]
Yu, Hongying [3 ]
Li, Yang [1 ]
Mao, Junjun [4 ]
Zhang, Wenhong [1 ,5 ,6 ]
机构
[1] Fudan Univ, Huashan Hosp, Natl Med Ctr Infect Dis, Dept Infect Dis,Shanghai Key Lab Infect Dis & Bios, 12 Middle Urumqi Rd, Shanghai 200040, Peoples R China
[2] Zunyi Med Univ, Dept TB, Affiliated Hosp, Zunyi, Guizhou, Peoples R China
[3] Hunan Univ Med Gen Hosp, Dept Infect Dis, Huaihua 418000, Hunan, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Pharm, 12 Middle Urumqi Rd, Shanghai 200040, Peoples R China
[5] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai, Peoples R China
[6] Fudan Univ, Shanghai Med Coll, Key Lab Med Mol Virol, MOH,MOE, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Linezolid; Population pharmacokinetics; External evaluation; Non-adherence; Monte Carlo simulation; IN-VITRO ACTIVITIES; MYCOBACTERIUM-TUBERCULOSIS; ABSOLUTE BIOAVAILABILITY; EXTERNAL EVALUATION; HEALTHY-VOLUNTEERS; PHARMACODYNAMICS; FORGIVENESS; THROMBOCYTOPENIA; NONCOMPLIANCE; VARIABILITY;
D O I
10.1016/j.ejps.2024.106915
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Background: Population pharmacokinetic (popPK) models can optimise linezolid dosage regimens in patients with multidrug-resistant tuberculosis (MDR-TB); however, unknown cross-centre precision and poor adherence remain problematic. This study aimed to assess the predictive ability of published models and use the most suitable model to optimise dosage regimens and manage compliance. Methods: One hundred fifty-eight linezolid plasma concentrations from 27 patients with MDR-TB were used to assess the predictive performance of published models. Prediction-based metrics and simulation-based visual predictive checks were conducted to evaluate predictive ability. Individualised remedial dosing regimens for various delayed scenarios were optimised using the most suitable model and Monte Carlo simulations. The influence of covariates, scheduled dosing intervals, and patient compliance were assessed. Results: Seven popPK models were identified. Body weight and creatinine clearance were the most frequently identified covariates influencing linezolid clearance. The model with the best performance had a median prediction error (PE%) of -1.62 %, median absolute PE of 29.50%, and percentages of PE within 20% (F20, 36.97%) and 30 % (F30, 51.26 %). Monte Carlo simulations indicated that a twice-daily 300 mg linezolid dose may be more efficient than 600 mg once daily. For the 'typical' patient treated with 300 mg twice daily, half the dosage should be taken after a delay of >= 3 h.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Linezolid Population Pharmacokinetics in South African Adults with Drug-Resistant Tuberculosis [J].
Abdelwahab, Mahmoud Tareq ;
Wasserman, Sean ;
Brust, James C. M. ;
Dheda, Keertan ;
Wiesner, Lubbe ;
Gandhi, Neel R. ;
Warren, Robin M. ;
Sirgel, Frederick A. ;
Meintjes, Graeme ;
Maartens, Gary ;
Denti, Paolo .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2021, 65 (12)
[2]   Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper# [J].
Abdul-Aziz, Mohd H. ;
Alffenaar, Jan-Willem C. ;
Bassetti, Matteo ;
Bracht, Hendrik ;
Dimopoulos, George ;
Marriott, Deborah ;
Neely, Michael N. ;
Paiva, Jose-Artur ;
Pea, Federico ;
Sjovall, Fredrik ;
Timsit, Jean F. ;
Udy, Andrew A. ;
Wicha, Sebastian G. ;
Zeitlinger, Markus ;
De Waele, Jan J. ;
Roberts, Jason A. .
INTENSIVE CARE MEDICINE, 2020, 46 (06) :1127-1153
[3]   Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis [J].
Agyeman, Akosua Adom ;
Ofori-Asenso, Richard .
ANNALS OF CLINICAL MICROBIOLOGY AND ANTIMICROBIALS, 2016, 15
[4]   In vitro activities of linezolid against clinical isolates of Mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs [J].
Alcalá, L ;
Ruiz-Serrano, MJ ;
Turégano, CPF ;
Garcia de Viedma, D ;
Díaz-Infantes, M ;
Marín-Arriaza, M ;
Bouza, E .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (01) :416-417
[5]   Population Pharmacokinetics of Linezolid in Tuberculosis Patients: Dosing Regimen Simulation and Target Attainment Analysis [J].
Alghamdi, Wael A. ;
Al-Shaer, Mohammad H. ;
An, Guohua ;
Alsultan, Abdullah ;
Kipiani, Maia ;
Barbakadze, Ketevan ;
Mikiashvili, Lali ;
Ashkin, David ;
Griffith, David E. ;
Cegielski, J. Peter ;
Kempker, Russell R. ;
Peloquin, Charles A. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2020, 64 (10)
[6]   In vivo pharmacodynamics of a new oxazolidinone (linezolid) [J].
Andes, D ;
van Ogtrop, ML ;
Peng, J ;
Craig, WA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (11) :3484-3489
[7]  
[Anonymous], 2022, WHO CONSOLIDATED GUI
[8]   Quantification of the Forgiveness of Drugs to Imperfect Adherence [J].
Assawasuwannakit, P. ;
Braund, R. ;
Duffull, S. B. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2015, 4 (03) :204-211
[9]   A Review of Population Pharmacokinetic Analyses of Linezolid [J].
Bandin-Vilar, Enrique ;
Garcia-Quintanilla, Laura ;
Castro-Balado, Ana ;
Zarra-Ferro, Irene ;
Gonzalez-Barcia, Miguel ;
Campos-Toimil, Manuel ;
Mangas-Sanjuan, Victor ;
Mondelo-Garcia, Cristina ;
Fernandez-Ferreiro, Anxo .
CLINICAL PHARMACOKINETICS, 2022, 61 (06) :789-817
[10]   A Bayesian approach for the estimation of patient compliance based on the last sampling information [J].
Barriere, Olivier ;
Li, Jun ;
Nekka, Fahima .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2011, 38 (03) :333-351