Advancements and opportunities to improve bottom-up estimates of global wetland methane emissions

被引:2
作者
Zhu, Qing [1 ]
Jacob, Daniel J. [2 ]
Yuan, Kunxiaojia [1 ]
Li, Fa [3 ,5 ]
Runkle, Benjamin R. K. [4 ]
Chen, Min [5 ]
Bloom, A. Anthony [6 ]
Poulter, Benjamin [7 ]
East, James D. [2 ]
Riley, William J. [1 ]
Mcnicol, Gavin [8 ]
Worden, John [7 ]
Frankenberg, Christian [9 ]
Halabisky, Meghan [10 ]
机构
[1] Lawrence Berkeley Natl Lab, Climate & Ecosyst Sci Div, Berkeley, CA 94720 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Stanford Univ, Doerr Sch Sustainabil, Stanford, CA 94305 USA
[4] Univ Arkansas, Biol & Agr Engn, Fayetteville, AR 72701 USA
[5] Univ Wisconsin Madison, Dept Forest & Wildlife Ecol, Madison, WI 53706 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91107 USA
[7] NASA Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[8] Univ Illinois, Dept Earth & Environm Sci, Chicago, IL 60607 USA
[9] CALTECH, Div Geol & Planetary Sci, Pasadena, CA USA
[10] UNIV WASHINGTON, Sch Environm & Forest Sci, Seattle, WA USA
基金
美国国家航空航天局;
关键词
global wetlands; methane emission; bottom-up inventories; uncertainty; future opportunities; TERRESTRIAL ECOSYSTEMS; SATELLITE DATA; CARBON FLUXES; PRESENT STATE; MODEL; DATASET; DYNAMICS; PROJECT; SYSTEM; AREA;
D O I
10.1088/1748-9326/adad02
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetlands are the single largest natural source of atmospheric methane (CH4), contributing approximately 30% of total surface CH4 emissions, and they have been identified as the largest source of uncertainty in the global CH4 budget based on the most recent Global Carbon Project CH4 report. High uncertainties in the bottom-up estimates of wetland CH4 emissions pose significant challenges for accurately understanding their spatiotemporal variations, and for the scientific community to monitor wetland CH4 emissions from space. In fact, there are large disagreements between bottom-up estimates versus top-down estimates inferred from inversion of atmospheric CH4 concentrations. To address these critical gaps, we review recent development, validation, and applications of bottom-up estimates of global wetland CH4 emissions, as well as how they are used in top-down inversions. These bottom-up estimates, using (1) empirical biogeochemical modeling (e.g. WetCHARTs: 125-208 TgCH4 yr-1); (2) process-based biogeochemical modeling (e.g. WETCHIMP: 190 +/- 39 TgCH4 yr-1); and (3) data-driven machine learning approach (e.g. UpCH4: 146 +/- 43 TgCH4 yr-1). Bottom-up estimates are subject to significant uncertainties (similar to 80 Tg CH4 yr-1), and the ranges of different estimates do not overlap, further amplifying the overall uncertainty when combining multiple data products. These substantial uncertainties highlight gaps in our understanding of wetland CH4 biogeochemistry and wetland inundation dynamics. Major tropical and arctic wetland complexes are regional hotspots of CH4 emissions. However, the scarcity of satellite data over the tropics and northern high latitudes offer limited information for top-down inversions to improve bottom-up estimates. Recent advances in surface measurements of CH4 fluxes (e.g. FLUXNET-CH4) across a wide range of ecosystems including bogs, fens, marshes, and forest swamps provide an unprecedented opportunity to improve existing bottom-up estimates of wetland CH4 estimates. We suggest that continuous long-term surface measurements at representative wetlands, high fidelity wetland mapping, combined with an appropriate modeling framework, will be needed to significantly improve global estimates of wetland CH4 emissions. There is also a pressing unmet need for fine-resolution and high-precision satellite CH4 observations directed at wetlands.
引用
收藏
页数:18
相关论文
共 93 条
[1]   Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols [J].
Anderson, Frank E. ;
Bergamaschi, Brian ;
Sturtevant, Cove ;
Knox, Sara ;
Hastings, Lauren ;
Windham-Myers, Lisamarie ;
Detto, Matteo ;
Hestir, Erin L. ;
Drexler, Judith ;
Miller, Robin L. ;
Matthes, Jaclyn Hatala ;
Verfaillie, Joseph ;
Baldocchi, Dennis ;
Snyder, Richard L. ;
Fujii, Roger .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2016, 121 (03) :777-795
[2]   A blended TROPOMI CGOSAT satellite data product for atmospheric methane using machine learning to correct retrieval biases [J].
Balasus, Nicholas ;
Jacob, Daniel J. ;
Lorente, Alba ;
Maasakkers, Joannes D. ;
Parker, Robert J. ;
Boesch, Hartmut ;
Chen, Zichong ;
Kelp, Makoto M. ;
Nesser, Hannah ;
Varon, Daniel J. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2023, 16 (16) :3787-3807
[3]   Large increases in methane emissions expected from North America's largest wetland complex [J].
Bansal, Sheel ;
van der Burg, Max Post ;
Fern, Rachel R. ;
Jones, John W. ;
Lo, Rachel ;
McKenna, Owen P. ;
Tangen, Brian A. ;
Zhang, Zhen ;
Gleason, Robert A. .
SCIENCE ADVANCES, 2023, 9 (09)
[4]   Wetland Heterogeneity Determines Methane Emissions: A Pan- Arctic Synthesis [J].
Bao, Tao ;
Jia, Gensuo ;
Xu, Xiyan .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (14) :10152-10163
[5]   Satellite chartography of atmospheric methane from SCIAMACHYon board ENVISAT:: 2.: Evaluation based on inverse model simulations [J].
Bergamaschi, P. ;
Frankenberg, C. ;
Meirink, J. F. ;
Krol, M. ;
Dentener, F. ;
Wagner, T. ;
Platt, U. ;
Kaplan, J. O. ;
Koerner, S. ;
Heimann, M. ;
Dlugokencky, E. J. ;
Goede, A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D2)
[6]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[7]   A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0) [J].
Bloom, A. Anthony ;
Bowman, Kevin W. ;
Lee, Meemong ;
Turner, Alexander J. ;
Schroeder, Ronny ;
Worden, John R. ;
Weidner, Richard ;
McDonald, Kyle C. ;
Jacob, Daniel J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (06) :2141-2156
[8]   What are the greenhouse gas observing system requirements for reducing fundamental biogeochemical process uncertainty? Amazon wetland CH4 emissions as a case study [J].
Bloom, A. Anthony ;
Lauvaux, Thomas ;
Worden, John ;
Yadav, Vineet ;
Duren, Riley ;
Sander, Stanley P. ;
Schimel, David S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (23) :15199-15218
[9]   The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times [J].
Bloom, A. Anthony ;
Exbrayat, Jean-Francois ;
van der Velde, Ivar R. ;
Feng, Liang ;
Williams, Mathew .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (05) :1285-1290
[10]   Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data [J].
Bloom, A. Anthony ;
Palmer, Paul I. ;
Fraser, Annemarie ;
Reay, David S. ;
Frankenberg, Christian .
SCIENCE, 2010, 327 (5963) :322-325