Artificial intelligence in diagnosis of prostate cancer using magnetic resonance imaging. New approach

被引:0
作者
Aboyan, I. A. [1 ]
Redkin, V. A. [1 ]
Nazaruk, M. G. [2 ]
Polyakov, A. S. [1 ]
Pakus, S. M. [1 ]
Lemeshko, S. I. [1 ]
Khasigov, A. V. [3 ]
机构
[1] Clin & Diagnost Ctr Zdorovie, 70-3 Dolomanovskiy Pereulok, Rostov Na Donu 344011, Russia
[2] Gremion Plus, 1-52 50 Letiya Rostselmasha St, Rostov Na Donu 344065, Russia
[3] Minist Hlth Russia, Northern Ossetia State Med Acad, 40 Pushkinskaya St, Vladikavkaz 362019, Northern Osseti, Russia
来源
ONKOUROLOGIYA | 2024年 / 19卷 / 02期
关键词
prostate cancer; multiparametric magnetic resonance imaging; artificial intelligence; neural networks; diagnosing prostate cancer; MULTI-PARAMETRIC MRI; BIOPSY;
D O I
10.17650/1726-9776-2024-20-2-35-43
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Aim. To improve the diagnosis of prostate cancer by training a neural network to identify malignant tumor lesions using the results of magnetic resonance imaging (MRI) studies with the same or greater accuracy than an experienced radiologist, using as the truth histological mapping of slides performed by a morphologist. Materials and methods. The work was performed at the "Zdorovie" Clinical and Diagnostic Center in Rostov-on-Don. Patients selected for the study underwent MRI in the Philips Ingenia 3.0T machine according to the prostate multiparametric MRI protocol, which complies with the requirements of PI-RADS v.2.1. The obtained data was used to train a convolutional neural network based on the U-Net architecture. The correct map of the actual locations of prostate cancer lesions was obtained using the "Morphologist's digital mapping tool" software. Results. The research part of the work consisted of following stages: center dot development of the "Morphologist's digital mapping tool" software for virtualization of lesions; center dot analysis of MRI data archive, retrospective selection of patients; center dot mapping of data by a morphologist to identify lesions in the prostate with layer-by-layer transfer of visualized lesions in the histological preparation to the image of the prostate gland in the "Morphologist's digital mapping tool", as well as training of the neural network to identify the presence of a malignant neoplasm in the prostate, location of the lesion(s), clinically significant disease; center dot data validation. For a certain amount of input data and high-quality mapping of this data, the neural network is capable of detecting prostate cancer lesions with the same accuracy as an experienced radiologist. Validation showed that the neural network correctly localized prostate cancer in 78 % of cases, while the radiologist did so in 55 % of cases. Comparative analysis also revealed the ability of the neural network to detect prostate cancer in areas of the prostate where the radiologist could not recognize any visual patterns indicating the presence of prostate cancer. Conclusion. Training a neural network without the participation of a radiologist is a fundamentally new approach that allows to sidestep the experience and qualifications of a radiologist in interpreting the obtained multiparametric MRI images.
引用
收藏
页码:35 / 43
页数:158
相关论文
共 33 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]   Tasks for artificial intelligence in prostate MRI [J].
Belue, Mason J. ;
Turkbey, Baris .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2022, 6 (01)
[3]   Artificial Intelligence in Medicine: Today and Tomorrow [J].
Briganti, Giovanni ;
Le Moine, Olivier .
FRONTIERS IN MEDICINE, 2020, 7
[4]   Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study [J].
Brown, Louise Clare ;
Ahmed, Hashim U. ;
Faria, Rita ;
Bosaily, Ahmed El-Shater ;
Gabe, Rhian ;
Kaplan, Richard S. ;
Parmar, Mahesh ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard Graham ;
Freeman, Alex ;
Kirkham, Alexander ;
Oldroyd, Robert ;
Parker, Chris ;
Bott, Simon ;
Burns-Cox, Nick ;
Dudderidge, Tim ;
Ghei, Maneesh ;
Henderson, Alastair ;
Persad, Rajendra ;
Rosario, Derek J. ;
Shergill, Iqbal ;
Winkler, Mathias ;
Soares, Marta ;
Spackman, Eldon ;
Sculpher, Mark ;
Emberton, Mark .
HEALTH TECHNOLOGY ASSESSMENT, 2018, 22 (39) :1-+
[5]   Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge [J].
Bulten, Wouter ;
Kartasalo, Kimmo ;
Chen, Po-Hsuan Cameron ;
Strom, Peter ;
Pinckaers, Hans ;
Nagpal, Kunal ;
Cai, Yuannan ;
Steiner, David F. ;
van Boven, Hester ;
Vink, Robert ;
Hulsbergen-van de Kaa, Christina ;
van der Laak, Jeroen ;
Amin, Mahul B. ;
Evans, Andrew J. ;
van der Kwast, Theodorus ;
Allan, Robert ;
Humphrey, Peter A. ;
Gronberg, Henrik ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Tsuzuki, Toyonori ;
Hakkinen, Tomi ;
Egevad, Lars ;
Demkin, Maggie ;
Dane, Sohier ;
Tan, Fraser ;
Valkonen, Masi ;
Corrado, Greg S. ;
Peng, Lily ;
Mermel, Craig H. ;
Ruusuvuori, Pekka ;
Litjens, Geert ;
Eklund, Martin .
NATURE MEDICINE, 2022, 28 (01) :154-+
[6]   Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet [J].
Cao, Ruiming ;
Bajgiran, Amirhossein Mohammadian ;
Mirak, Sohrab Afshari ;
Shakeri, Sepideh ;
Zhong, Xinran ;
Enzmann, Dieter ;
Raman, Steven ;
Sung, Kyunghyun .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2496-2506
[7]  
Gaur Sonia, 2018, Oncotarget, V9, P33804, DOI [10.18632/oncotarget.26100, 10.18632/oncotarget.26100]
[8]   Multiparametric prostate MRI quality assessment using a semi-automated PI-QUAL software program [J].
Giganti, Francesco ;
Lindner, Sydney ;
Piper, Jonathan W. ;
Kasivisvanathan, Veeru ;
Emberton, Mark ;
Moore, Caroline M. ;
Allen, Clare .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
[9]  
Gladell P., Protocol for the examination of radical prostatectomy specimens from patients with carcinomas of the prostate gland
[10]   Artificial intelligence at the intersection of pathology and radiology in prostate cancer [J].
Harmon, Stephanie A. ;
Tuncer, Sena ;
Sanford, Thomas ;
Choyke, Peter L. ;
Turkbey, Baris .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2019, 25 (03) :183-188