Functional inequalities for a family of infinite-dimensional diffusions with degenerate noise

被引:0
作者
Baudoin, Fabrice [1 ]
Gordina, Maria [2 ]
Herzog, David P. [3 ]
Kim, Jina [4 ]
Melcher, Tai [5 ]
机构
[1] Aarhus Univ, Dept Math, Aarhus, Denmark
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50311 USA
[4] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[5] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
Quasi-invariance; Hypoellipticity; NAVIER-STOKES EQUATIONS; HARNACK INEQUALITIES; QUASI-INVARIANCE; ERGODICITY; HYPOCOERCIVITY;
D O I
10.1016/j.jfa.2024.110814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a family of infinite-dimensional diffusions with degenerate noise, we develop a modified Gamma calculus on finite-dimensional projections of the equation in order to produce explicit functional inequalities that can be scaled to infinite dimensions. The choice of our Gamma operator appears canonical in our context, as the estimates depend only on the induced control distance. We apply the general analysis to a number of examples, ex
引用
收藏
页数:45
相关论文
共 53 条
[21]  
E WN, 2001, COMMUN PUR APPL MATH, V54, P1386
[22]   NONCOMPACT CHOQUET THEOREM [J].
EDGAR, GA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 49 (02) :354-358
[23]   EXTREMAL INTEGRAL-REPRESENTATIONS [J].
EDGAR, GA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 23 (02) :145-161
[24]   ERGODICITY OF THE 2-D NAVIER-STOKES EQUATION UNDER RANDOM PERTURBATIONS [J].
FLANDOLI, F ;
MASLOWSKI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :119-141
[25]   Ergodicity in randomly forced Rayleigh-Benard convection [J].
Foldes, J. ;
Glatt-Holtz, N. E. ;
Richards, G. ;
Whitehead, J. P. .
NONLINEARITY, 2016, 29 (11) :3309-3345
[26]   Generalized Mehler semigroups:: The non-Gaussian case [J].
Fuhrman, M ;
Röckner, M .
POTENTIAL ANALYSIS, 2000, 12 (01) :1-47
[27]   Hardy-Littlewood-Sobolev inequalities for a class of non-symmetric and non-doubling hypoelliptic semigroups [J].
Garofalo, Nicola ;
Tralli, Giulio .
MATHEMATISCHE ANNALEN, 2022, 383 (1-2) :1-38
[29]  
Gordina M., 2017, An Application of a Functional Inequality to Quasi-Invariance in Infinite Dimensions, P251
[30]   A Hypocoercivity Related Ergodicity Method for Singularly Distorted Non-Symmetric Diffusions [J].
Grothaus, Martin ;
Stilgenbauer, Patrik .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) :331-379