Functional inequalities for a family of infinite-dimensional diffusions with degenerate noise

被引:0
作者
Baudoin, Fabrice [1 ]
Gordina, Maria [2 ]
Herzog, David P. [3 ]
Kim, Jina [4 ]
Melcher, Tai [5 ]
机构
[1] Aarhus Univ, Dept Math, Aarhus, Denmark
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50311 USA
[4] Trinity Univ, Dept Math, San Antonio, TX 78212 USA
[5] Univ Virginia, Dept Math, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
Quasi-invariance; Hypoellipticity; NAVIER-STOKES EQUATIONS; HARNACK INEQUALITIES; QUASI-INVARIANCE; ERGODICITY; HYPOCOERCIVITY;
D O I
10.1016/j.jfa.2024.110814
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a family of infinite-dimensional diffusions with degenerate noise, we develop a modified Gamma calculus on finite-dimensional projections of the equation in order to produce explicit functional inequalities that can be scaled to infinite dimensions. The choice of our Gamma operator appears canonical in our context, as the estimates depend only on the induced control distance. We apply the general analysis to a number of examples, ex
引用
收藏
页数:45
相关论文
共 53 条
[1]  
[Anonymous], 2014, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences
[2]  
Bakry D., 1986, LOCAL TIMES GLOBAL G, V150, P39
[3]  
Bakry D., 1985, Lectures Notes in Mathematics, V1123, P177
[4]   Harnack inequalities in infinite dimensions [J].
Bass, Richard F. ;
Gordina, Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (11) :3707-3740
[5]  
Baudoin F., 2023, Potential Anal., P1
[6]  
Baudoin F., 2016, Wasserstein contraction properties for hypoelliptic diffusions
[7]   Gamma Calculus Beyond Villani and Explicit Convergence Estimates for Langevin Dynamics with Singular Potentials [J].
Baudoin, Fabrice ;
Gordina, Maria ;
Herzog, David P. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 241 (02) :765-804
[8]   Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions [J].
Baudoin, Fabrice ;
Wang, Jing .
ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
[9]   Gradient bounds for Kolmogorov type diffusions [J].
Baudoin, Fabrice ;
Gordina, Maria ;
Mariano, Phanuel .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01) :612-636
[10]   Bakry-Emery meet Villani [J].
Baudoin, Fabrice .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (07) :2275-2291