Effect of zirconia addition on laser powder bed fusion of Inconel 718-zirconia composite

被引:0
|
作者
Jiang, Cho-Pei [1 ,2 ]
Maidhah, Andi Ard [3 ,4 ]
Wibisono, Alvian Toto [5 ]
Toyserkani, Ehsan [6 ]
Macek, Wojciech [7 ]
Ramezani, Maziar [8 ]
机构
[1] Natl Taipei Univ Technol, Dept Mech Engn, Taipei 10608, Taiwan
[2] Natl Taipei Univ Technol, High Value Biomat Res & Commercializat Ctr, Taipei 10608, Taiwan
[3] Natl Taipei Univ Technol, Coll Mech & Elect Engn, Taipei 10608, Taiwan
[4] Univ Borneo Tarakan, Dept Mech Engn, Tarakan, Indonesia
[5] Inst Teknol Sepuluh Nopember, Dept Mat & Met Engn, Surabaya, Indonesia
[6] Univ Waterloo, Dept Mech & Mechatron Engn, Waterloo, ON, Canada
[7] Gdansk Univ Technol, Fac Mech Engn & Ship Technol, Gabriela Narutowicza 11-12, PL-80233 Gdansk, Poland
[8] Auckland Univ Technol, Dept Mech Engn, Auckland, New Zealand
关键词
Inconel; 718; Zirconia; Additive manufacturing; Laser powder bed fusion; MECHANICAL-PROPERTIES; 718; SUPERALLOY; MICROSTRUCTURE; PARAMETERS;
D O I
10.1007/s40964-025-01044-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study investigates the integration of zirconia (ZrO2) as a reinforcing agent in the Inconel 718 (IN718) matrix to potentially enhance material hardness and high-temperature oxidation resistance. Employing laser powder bed fusion (LPBF), 3D composite parts of IN718-ZrO2 were systematically fabricated, varying the ZrO2 mass. The primary objectives encompass exploring the impact of ZrO2 on the microstructure, micro-hardness, and high-temperature oxidation of the IN718- ZrO2 composite. The research employed comprehensive testing methodologies, including scanning electron microscopy (SEM), micro-Vickers hardness, XRD, thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). Results elucidated the successful 3D printing of IN718-ZrO2 composites utilizing the LPBF. Notably, defects such as porosity, cracks, lack of fusion, and balling were identified, intensifying with increased ZrO2 content. The composite demonstrated a substantial increase in hardness across all ZrO2 mass variations compared to pure IN718, with 1 wt.% ZrO2 achieving the highest hardness. Furthermore, oxidation resistance exhibited improvement with higher ZrO2 content in the composite. The comprehensive analysis unveils promising opportunities for developing and applying IN718-ZrO2 composites in industries characterized by high-temperature environments and elevated wear conditions. The findings provide valuable insights into optimizing the performance of these composites, thereby contributing to advancements in materials engineering for challenging operational conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Process Optimization of Inconel 718 Alloy Produced by Laser Powder Bed Fusion
    Hwang, Jiun-Ren
    Zheng, Jing-Yuan
    Kuo, Po-Chen
    Huang, Chou-Dian
    Fung, Chin-Ping
    METALS, 2022, 12 (09)
  • [2] Laser beam powder bed fusion of Inconel 718 under high power and scanning speed
    Ikeshoji, Toshi-Taka
    Tachibana, Yusuke
    Yonehara, Makiko
    Kyogoku, Hideki
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2023, 17 (06)
  • [3] Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718
    Ardi, Dennise Tanoko
    Guowei, Lim
    Maharjan, Niroj
    Mutiargo, Bisma
    Leng, Seng Hwee
    Srinivasan, Raghavan
    ADDITIVE MANUFACTURING, 2020, 36
  • [4] Laser powder-bed fusion of Inconel 718 to manufacture turbine blades
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Corrado, Gaetano
    Argenio, Paolo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (9-12): : 4023 - 4031
  • [5] Laser powder bed fusion of compositionally graded CoCrMo-Inconel 718
    Wen, Yaojie
    Zhang, Baicheng
    Narayan, Ramasubramanian Lakshmi
    Wang, Pei
    Song, Xu
    Zhao, Hao
    Ramamurty, Upadrasta
    Qu, Xuanhui
    ADDITIVE MANUFACTURING, 2021, 40
  • [6] Determination of the anisotropy in mechanical properties of laser powder bed fusion Inconel 718 by ultrasonic testing
    Alay, Tugce Kaleli
    Cagirici, Mehmet
    Yagmur, Aydin
    Gur, C. Hakan
    NONDESTRUCTIVE TESTING AND EVALUATION, 2025, 40 (01) : 206 - 224
  • [7] Creep behaviour of inconel 718 processed by laser powder bed fusion
    Xu, Zhengkai
    Hyde, C. J.
    Tuck, C.
    Clare, A. T.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2018, 256 : 13 - 24
  • [8] Room and elevated temperature fatigue crack propagation behavior of Inconel 718 alloy fabricated by laser powder bed fusion
    Kim, Sumin
    Choi, Heesoo
    Lee, Jehyun
    Kim, Sangshik
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 140
  • [9] Performance Characterization of Laser Powder Bed Fusion Fabricated Inconel 718 Treated with Experimental Hot Isostatic Processing Cycles
    Varela, Jaime
    Merino, Jorge
    Pickett, Christina
    Abu-Issa, Ahmad
    Arrieta, Edel
    Murr, Lawrence E.
    Wicker, Ryan B.
    Ahlfors, Magnus
    Godfrey, Donald
    Medina, Francisco
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2020, 4 (03):
  • [10] The Effect of Precipitates on the Stress Rupture Properties of Laser Powder Bed Fusion Inconel 718 Alloy
    Du, Jinhong
    Cheng, Wenhao
    Sun, Yiming
    Ma, Rui
    Liu, Hongbing
    Song, Xiaoguo
    Yang, Jin
    Tan, Caiwang
    COATINGS, 2023, 13 (12)