Variability analysis of soil organic carbon content across land use types and its digital mapping using machine learning and deep learning algorithms

被引:2
作者
Oukhattar, Mounir [1 ,2 ]
Gadal, Sebastien [1 ,3 ]
Robert, Yannick [4 ]
Saby, Nicolas [5 ]
Houmma, Ismaguil Hanade [6 ,7 ,8 ]
Keller, Catherine [2 ]
机构
[1] Aix Marseille Univ, Avignon Univ, Univ Nice Sophia Antipolis, CNRS,ESPACE UMR 7300, F-13545 Aix En Provence 4, France
[2] Aix Marseille Univ, CNRS, Technopole Environm Arbois Mediterranee, IRD,INRAE,CEREGE, BP80, F-13545 Aix En Provence 4, France
[3] Vilnius Univ, Inst Math Comp Sci, IA Remote Sensing Team, Vilnius, Lithuania
[4] Serv Observ & Lutte Pollut, Direct Expertise & Mediat Environm Pole, Transit Ecol & Energet DGD, Transit Environm Culture Sport & Equipements, BP 48014, F-13567 Marseille 2, France
[5] INRAE, Unite Info&Sols, Ctr Rech Val Loire, F-45075 Orleans, France
[6] Univ Quebec Trois Rivieres, Dept Environm Sci, Trois Rivieres, PQ G8Z 4M3, Canada
[7] Univ Quebec Trois Rivieres, Res Ctr Watershed Aquat Ecosyst Interact RIVE, Trois Rivieres, PQ G8Z 4M3, Canada
[8] Mohammed VI Polytech Univ UM6P, Int Water Res Inst, Benguerir 43150, Morocco
关键词
Soil organic carbon; Land use; Machine learning; Deep learning; Spatial modeling; Environmental covariates; COVER CHANGE; STOCKS; CLIMATE; TOPSOIL; SEQUESTRATION; VEGETATION; FOREST; URBAN; AGRICULTURE; UNCERTAINTY;
D O I
10.1007/s10661-025-13972-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Soil organic carbon (SOC) plays a crucial role in carbon cycle management and soil fertility. Understanding the spatial variations in SOC content is vital for supporting sustainable soil resource management. In this study, we analyzed the variability in SOC content across eleven different types of land use in the mining basin of Provence in southeastern France. We modelled this variability spatially using machine and deep learning regression. Four algorithms were tested: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural networks (DNNs). These integrated 162 soil samples and 21 environmental covariates, including climatic parameters, lithology, topographical features, land cover, remote sensing data, and soil physicochemical parameters. The results clearly show a large variability in SOC content across land use types, with forests revealing the highest values (mean of 69.3 g/kg) and arable land the lowest (mean of 8.9 g/kg). The Pearson correlation coefficients (R) indicate that land cover, topography, lithology, environmental indices, and clay content are the main factors influencing the SOC content. The XGBoost model generated the best result (R2 = 0.73), closely followed by RF (R2 = 0.68) and DNN (R2 = 0.60), while SVM showed the weakest performance (R2 = 0.36). XGBoost and RF remain the best options for obtaining reliable results with a limited number of soil samples and reduced calculation time. The results of this study provide vital insights for managing soil organic carbon in southeastern France and for climate change mitigation in sustainable land management.
引用
收藏
页数:32
相关论文
共 160 条
[1]  
ADEME, 2014, Sol et Carbone, P1
[2]   Environmental and pedological factors influencing organic carbon storage in Italian forest soils [J].
Andreetta, Anna ;
Chelli, Stefano ;
Bonifacio, Eleonora ;
Canullo, Roberto ;
Cecchini, Guia ;
Carnicelli, Stefano .
GEODERMA REGIONAL, 2023, 32
[3]  
Autran J., 2014, Aix-en-Provence, CNRS-OHM Bassin minier de Provence, TOHM, V2, P88
[4]   Spatial analysis of soil quality using geospatial techniques in Botanic Garden of Indian Republic, Noida, Uttar Pradesh, India [J].
Babbar, Deepakshi ;
Chauhan, Sandeep Kr. ;
Sharma, Damini ;
Upadhyay, Kusum ;
Dwivedi, Mayank D. ;
Sahana, Mehebub ;
Kumar, Shailender .
ENVIRONMENTAL SUSTAINABILITY, 2022, 5 (04) :471-492
[5]   Total carbon and nitrogen in the soils of the world [J].
Batjes, N. H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2014, 65 (01) :10-21
[6]  
Bechet B., 2017, Rapport INRA, P609
[7]   Carbon storage and fluxes in existing and newly created urban soils [J].
Beesley, Luke .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2012, 104 :158-165
[8]   A global meta-analysis of soil organic carbon in the Anthropocene [J].
Beillouin, Damien ;
Corbeels, Marc ;
Demenois, Julien ;
Berre, David ;
Boyer, Annie ;
Fallot, Abigail ;
Feder, Frederic ;
Cardinael, Remi .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]  
Belyadi H., 2021, Machine Learning Guide for Oil and Gas using Python, P169, DOI [DOI 10.1016/B978-0-12-821929-4.00004-4, 10.1016/B978-0-12-821929-4.00004-4]
[10]   CO2 emission from mineral soils following land-cover change in Brazil [J].
Bernoux, M ;
Carvalho, MDS ;
Volkoff, B ;
Cerri, CC .
GLOBAL CHANGE BIOLOGY, 2001, 7 (07) :779-787